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Abstract

Our motivation is the practical problem of aiming a payload on a small floating buoy at
an arbitrary point in the sky. The buoy payload might be a camera, a directional antenna,
or some other sensor with a narrow field of view. Such a sensor could, for example, perform
some meteorological measurements of the air column above the ocean surface, or provide
directional communications with a satellite in a remote sensing application.

Specifically, we develop a control law which solves the pointing and stabilization problem
for a particular two-body buoy configuration. The buoy’s mechanical design is central to
the development as well. The buoy configuration considered here is a long cylindrical buoy
with a driven two axis universal joint near the middle. The buoy is ballasted to float upright
and the joint is used to stabilize the buoy such that the payload can be pointed at any point
within 35 degrees of the vertical.

A numerical model and simulation framework are developed to experiment with control
strategies for this system. The dynamics and kinematics of the two-body buoy problem
are derived as a self-contained system. The external forces and moments modeled by the
simulation are buoyancy, gravity, and drag. Additionally, the effects of regular and irregular
surface waves are also modeled. Several experiments are conducted to inform and validate
the numerical model of the buoy dynamics.

Both a sliding mode control law with feed forward (SMC+FF) and a proportional inte-
gral and derivative control law with feed forward (PID+FF) seem to be able to control the
payload well. The feed forward term allows the SMC or PID elements of the control law to
handle only the disturbance rejection needs.

The buoy system’s simulated performance in regular and irregular seas is mixed. If there
is significant wave energy at the buoy’s resonant frequency, the buoy becomes uncontrollable.
This is not a function of the control law, but rather of the passive characteristics of the
buoy’s structure.

Additionally the effects of system latency, control rate, initial condition, actuator ac-
celeration limits, and payload position with respect to the vertical are all compared and
characterized.

An alternate joint design of an “elevation over azimuth” joint was considered and dis-
carded. An alternate method of solving for the system dynamics in the simulation using
constraint equations was implemented and evaluated, as well.

ix



x



Table of Contents

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

1 Chapter 1 - Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Relevant Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 The Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Chapter 2 - Model Derivation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Simulation Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Model Dynamics (6DOF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Buoyant Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Gravity Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Drag Forces and Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Modeling Wave Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Joint Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Joint Axis Controller Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Estimating the Structure’s Resonant Peak . . . . . . . . . . . . . . . . . . . 33

2.10 Model Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Chapter 3 - Model Verification . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Small Test Cylinder Experiment . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Large Test Cylinder Experiment . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Resonant Peak Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Model Validation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

xi



4 Chapter 4 - Buoy Control Laws . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Sliding Mode Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 SMC+FF Control Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 PID+FF Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 The Integral Gain Ki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5 Feed Forward Gain Kff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.6 Composite Pointing Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7 Guaranteeing SMC Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Chapter 5 - Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Prototype Buoy Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 SMC Gain Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3 Control Rate Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.4 System Latency Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Fin Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6 Yaw Damper Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.7 Acceleration Limit Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.8 Initial Condition Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.9 Vertical Angle Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 PID+FF Control Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.11 Vertical Oscillation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.12 Regular Ocean Wave Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.13 Irregular Ocean Wave Effects . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.14 Results Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6 Chapter 6 - Other Design and Modeling Issues . . . . . . . . . . . . . . 121

6.1 Perfect vs. Imperfect State Information . . . . . . . . . . . . . . . . . . . . 121

6.2 System CM Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 El. Over Az. Joint vs. a Universal Joint Configuration . . . . . . . . . . . . 122

6.4 Joint Motion in SMC vs. PID Control . . . . . . . . . . . . . . . . . . . . . 124

6.5 Hydrodynamic (Added) Mass Effects . . . . . . . . . . . . . . . . . . . . . . 125

7 Chapter 7 - Conclusions & Future Work . . . . . . . . . . . . . . . . . . 131

7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A Appendix A - Modeling Ocean Waves . . . . . . . . . . . . . . . . . . . . 139

A.1 Regular Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.2 Irregular Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

A.3 Pierson-Moskowitz Spectral Distribution . . . . . . . . . . . . . . . . . . . . 144

B Appendix B - Additional Buoy Sizes . . . . . . . . . . . . . . . . . . . . . 147

xii



C Appendix C - Detailed Joint Controller Discussion . . . . . . . . . . . . 151
C.1 The Primitive Motion Model . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.2 Acceleration Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
C.3 Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
C.4 Position-Velocity Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

D Appendix D - Solutions By Constraint Equations . . . . . . . . . . . . . 163
D.1 Planar Solution Using Constraint Equations . . . . . . . . . . . . . . . . . . 163
D.2 Spatial Solution Using Constraint Equations . . . . . . . . . . . . . . . . . . 171

E Appendix E - Use of a Tuned Mass Damper . . . . . . . . . . . . . . . . 179

F Appendix F - Large Cylinder Trial Data . . . . . . . . . . . . . . . . . . 187

xiii



xiv



List of Figures

1.1 The Motivating Example for the Problem . . . . . . . . . . . . . . . . . . . 2

1.2 Alternative Possible Design Choices . . . . . . . . . . . . . . . . . . . . . . 7

2.1 Buoy Model Coordinate Systems and Significant Vectors . . . . . . . . . . . 10

2.2 The 5 Buoyant Cases for a Cylinder . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Parameters for Calculating the Submerged Volume of a Cylinder . . . . . . 21

2.4 The Two Universal Joint Angle Pairs: {φx, φy} and {φv, φz} . . . . . . . . 29

2.5 Maximum Joint Vertical Angle vs. Joint Azimuth Angle . . . . . . . . . . . 31

3.1 The Small Test Cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 A Typical Small Cylinder Trial Video and Animation . . . . . . . . . . . . 41

3.3 Simulation of Small Cylinder with Linear and Quadratic Drag Terms . . . . 43

3.4 Small Cylinder Simulation with Offset CM . . . . . . . . . . . . . . . . . . . 44

3.5 The assembly drawing of the large instrumented cylinder. . . . . . . . . . . 47

3.6 Filtered and Unfiltered Roll and Pitch Measurements for Trial B . . . . . . 48

3.7 Large Cylinder Inclined Release Trial B Video Frames . . . . . . . . . . . . 49

3.8 Large Cylinder Inclined Release Trials B, F, J, and N . . . . . . . . . . . . 50

3.9 Large Cylinder Inclined Release Trials, The First 15 Seconds . . . . . . . . 51

3.10 Large Cylinder Yaw Rate Trials E, H, and I . . . . . . . . . . . . . . . . . . 52

3.11 Large Cylinder Vertical Translation Trials D, L, and M . . . . . . . . . . . 53

3.12 Large Cylinder Vertical Translation Trials D, L, and M, the first 20 seconds 54

3.13 Large Cylinder Small Wave Tank Trials O, P, and Q: Pitch and Roll Angles 54

3.14 Large Cylinder Small Wave Tank Trials O, P, and Q: Vertical Acceleration 55

3.15 Large Cylinder Large Wave Tank Trial T Video Frames . . . . . . . . . . . 56

4.1 A phase portrait of an SMC system. . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Chattering in an SMC system . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3 Commanded, Payload, and Joint Azimuth Angles . . . . . . . . . . . . . . . 69

4.4 Payload Reference Angles and Joint Axis Angles for Different Kff Values . 74

4.5 The System Used to Guarantee SMC Stability . . . . . . . . . . . . . . . . 76

4.6 The SMC controller model h(x) w/ and w/o fsub effects. . . . . . . . . . . . 78

4.7 The SMC controller model h(x) and g(x) vs. Payload Angle. . . . . . . . . 79

4.8 The minimum magnitude of k(x) to guarantee stability. . . . . . . . . . . . 80

5.1 Images from the animated results of the numerical simulation. . . . . . . . . 82

5.2 The Housing and Payload Sections of the Prototype Buoy . . . . . . . . . . 83

5.3 The Complete Prototype Buoy . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.4 One Dimensional Search for SMC Gain C . . . . . . . . . . . . . . . . . . . 87

5.5 One Dimensional Search for SMC Gain α . . . . . . . . . . . . . . . . . . . 88

xv



5.6 One Dimensional Search for SMC Gain δ . . . . . . . . . . . . . . . . . . . 89
5.7 Control Loop Rate Effects Comparison Plot . . . . . . . . . . . . . . . . . . 90
5.8 System Latency Effects Comparison Plot . . . . . . . . . . . . . . . . . . . 91
5.9 Passive Yaw Fin Effects Comparison Plot . . . . . . . . . . . . . . . . . . . 92
5.10 Active Yaw Damper Effects Comparison Plot . . . . . . . . . . . . . . . . . 93
5.11 An active yaw damper comparison for the J10 buoy configuration. . . . . . 94
5.12 Joint Acceleration Limit Effects Comparison Plot . . . . . . . . . . . . . . . 95
5.13 Initial Conditions 1-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.14 Initial Condition Effects Comparison Plot . . . . . . . . . . . . . . . . . . . 97
5.15 Initial Condition and Intermediate Move Effects Comparison Plot . . . . . . 98
5.16 Initial Conditions Effects When Commanded to Vertical First . . . . . . . . 99
5.17 Vertical Angle Effects Comparison Plot . . . . . . . . . . . . . . . . . . . . 100
5.18 PID+FF vs. SMC+FF Comparison Plot (prototype buoy) . . . . . . . . . . 101
5.19 PID+FF vs. SMC+FF Comparison Plot (J15 buoy) . . . . . . . . . . . . . 102
5.20 Buoy Heights for the Vertical Oscillation Test . . . . . . . . . . . . . . . . . 103
5.21 Composite Payload Error for Regular Seas Trial 1 . . . . . . . . . . . . . . 105
5.22 Wave Elevation for Regular Seas Trial 1 . . . . . . . . . . . . . . . . . . . . 106
5.23 Buoy Heights for Regular Seas Trial 1 . . . . . . . . . . . . . . . . . . . . . 106
5.24 Composite Payload Error for Regular Seas Trial 2 . . . . . . . . . . . . . . 108
5.25 Wave Elevation for Regular Seas Trial 2 . . . . . . . . . . . . . . . . . . . . 109
5.26 Buoy Heights for Regular Seas Trial 2 . . . . . . . . . . . . . . . . . . . . . 109
5.27 The Buoy’s Resonant Peak for Regular Seas . . . . . . . . . . . . . . . . . . 111
5.28 Composite Payload Error for Irregular Seas Trial 1 . . . . . . . . . . . . . . 114
5.29 Wave Elevation for Irregular Seas Trial 1 . . . . . . . . . . . . . . . . . . . . 115
5.30 Buoy Heights for Irregular Seas Trial 1 . . . . . . . . . . . . . . . . . . . . . 115
5.31 Composite Payload Error for Irregular Seas Trial 2 . . . . . . . . . . . . . . 116
5.32 Wave Elevation for Irregular Seas Trial 2 . . . . . . . . . . . . . . . . . . . . 117
5.33 Buoy Heights for Irregular Seas Trial 2 . . . . . . . . . . . . . . . . . . . . . 117
5.34 Composite Payload Error for Irregular Seas Trial 3 . . . . . . . . . . . . . . 118
5.35 Wave Elevation for Irregular Seas Trial 3 . . . . . . . . . . . . . . . . . . . . 119
5.36 Buoy Heights for Irregular Seas Trial 3 . . . . . . . . . . . . . . . . . . . . . 119

6.1 El. Over Az. and Universal Joints Side by Side . . . . . . . . . . . . . . . . 122
6.2 Joint Vertical Angle for SMC+FF vs. PID+FF . . . . . . . . . . . . . . . . 124
6.3 Using Strip Theory to Calculate the Added Mass of a 3-D Object . . . . . . 127

A.1 Direction of Seas Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
A.2 Wave Height, Velocity, and Acceleration Phase Relationships . . . . . . . . 141
A.3 A fluid particle’s trajectory in the presences of waves. . . . . . . . . . . . . 142
A.4 The Pierson-Moskowitz Spectral Distribution: H1/3 = 1 to 7 m . . . . . . . 145
A.5 The Pierson-Moskowitz Spectral Distribution: H1/3 = 0.25 to 1.5 m . . . . 146

B.1 Nominal Mass Distributions and Joint Locations . . . . . . . . . . . . . . . 148

C.1 PVA Profiles for Equal Discrete Intervals . . . . . . . . . . . . . . . . . . . 153
C.2 PVA Profiles for Specified & Unequal Intervals . . . . . . . . . . . . . . . . 155
C.3 Acceleration as a Function of Λ . . . . . . . . . . . . . . . . . . . . . . . . . 156
C.4 PVA Cost Functions vs. Λ, I . . . . . . . . . . . . . . . . . . . . . . . . . . 157
C.5 PVA Cost Functions vs. Λ, II . . . . . . . . . . . . . . . . . . . . . . . . . . 158

xvi



C.6 PVA Profiles for Velocity Saturating Response . . . . . . . . . . . . . . . . 159
C.7 PVA Profiles for Non-Velocity Saturating Response . . . . . . . . . . . . . . 160

D.1 The Planar System Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 164
D.2 Body and hinge angles vs. time for a planar solution. . . . . . . . . . . . . . 170
D.3 Joint Geometry in the Spatially Constrained Equations Model . . . . . . . 172

E.1 The Tuned Mass Damper Model for Resonant Response Control . . . . . . 180
E.2 Impulse and Bode Plots with and without a TMD. . . . . . . . . . . . . . . 183
E.3 Impulse and Bode Plots with and without a TMD. . . . . . . . . . . . . . . 184
E.4 The Relative Motion of Two TMD Implementations . . . . . . . . . . . . . 185

F.1 Large Cylinder Inclined Release Trial B, 55 Seconds . . . . . . . . . . . . . 187
F.2 Large Cylinder Inclined Release Trial F, 55 Seconds . . . . . . . . . . . . . 188
F.3 Large Cylinder Inclined Release Trial J, 55 Seconds . . . . . . . . . . . . . . 189
F.4 Large Cylinder Inclined Release Trial N, 55 Seconds . . . . . . . . . . . . . 190

xvii



xviii



List of Tables

2.1 Variables used in the dynamics derivation. . . . . . . . . . . . . . . . . . . . 12

3.1 A summery of the large instrumented test cylinder trials. . . . . . . . . . . 46
3.2 A comparison of estimated and observed vertical oscillation frequencies. . . 56

4.1 The angular parameters used in the SMC+FF and PID+FF control laws. . 67
4.2 The feed forward gain values for each buoy configuration. . . . . . . . . . . 73

5.1 The prototype buoy mass and geometry parameters. . . . . . . . . . . . . . 85
5.2 The roll and pitch angles for each initial condition configuration. . . . . . . 97
5.3 The energy fraction above 3 rad/s for the PM wave spectrum. . . . . . . . . 112

6.1 Added mass terms for various 2-D shapes. . . . . . . . . . . . . . . . . . . . 128

B.1 The mass parameters used by the J series buoy configurations. . . . . . . . 148
B.2 The housing and payload lengths for the J series buoy configurations. . . . 149
B.3 The system CM location for the J series buoy configurations. . . . . . . . . 149

D.1 The variables used in the planar two body system. . . . . . . . . . . . . . . 166
D.2 The Jacobian and RHS components for solutions by constraint equation. . . 174

E.1 Model parameters for a cylindrical buoy w/ and w/o a tuned mass damper. 181

xix



xx



List of Acronyms

6DOF 6 Degree of Freedom
CAD Computer Aided Design
CB Center of Buoyancy
CM Center of Mass
DCM Direction Cosine Matrix
ELAZ Elevation Over Azimuth
ENU East North Up
EOM Equations of Motion
FEA/CDF Finite Element Analysts / Computational Fluid Dynamics
FF Feed Forward
HTM Homogeneous Transformation Matrix
IC Initial Condition
LHS Left Hand Side
LQR Linear Quadratic Regulator
LQI Linear Quadratic Integrator
NED North East Down
PID Position, Integral, Derivative Control
PV Position-Velocity
PVA Position, Velocity, and Acceleration
RHS Right Hand Side
RMS Root Mean Square
SE(3) Special Euclidean Group of Rigid Motions in R3

SMC Sliding Mode Control
SO(3) Special Orthogonal Group of 3× 3 matrices

xxi



xxii



Chapter 1

Introduction

Our motivation is the practical problem of aiming a payload on a small floating buoy at an
arbitrary point in the sky. The buoy payload might be a camera, a directional antenna, or
some other sensor with a narrow field of view. Such a sensor could, for example, perform
some meteorological measurements of the air column above the ocean surface, or provide
directional communications with a satellite in a remote sensing application.

Specifically, we develop a control law which solves the pointing and stabilization problem
for a particular two-body buoy configuration. The buoy’s mechanical design is central to the
development as well, and to narrow the trade space, we impose the following restrictions:

1. The buoy is essentially a long cylinder. This is to facilitate deploying it from existing
launch mechanisms above and below the water’s surface.

2. The payload mass makes up a “significant” portion of the total buoy mass (not nec-
essarily a majority).

3. The payload is required to be mechanically aimed in the desired direction.

4. It is desirable to minimize the number of actuation axes to minimize cost and maximize
payload volume.

To study this problem a model is derived for a jointed two body buoy floating in the
water. The joint can be actuated in two axes, and our model includes the effects of buoyancy,
gravity, and drag for the two-body system. The objective here is not to precisely describe all
of these effects (e.g., precise drag or added mass modeling would be very complicated), but
instead to supply a sufficiently qualitatively reasonable model for purposes of control law
development. As long as the modeling errors are not too extreme, we will rely on feedback
control to suppress them.

This dissertation will show that it should be possible to mechanically point and stabilize
a payload on a small buoy at an arbitrary point in the sky within approximately 35 degrees
of the zenith to an accuracy of 5 to 10 degrees. This made difficult by the non-linear effects
of buoyancy, drag, inertia, and surface waves.

The major contributions of this dissertation are:

1. An understanding of and a model for the dynamics of a jointed two body system
floating on the ocean’s surface in the presence of waves.

2. A pair of control strategies which can be used to stabilize and point such a system.
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1.1 Motivating Example

As a motivating example, consider the problem of using a directional antenna on a small
buoy to communicate with a satellite for a remote sending application. In this application, a
narrow beamwidth for the antenna might be considered 10 degrees wide. Given this scenario,
a reasonable minimum performance threshold might be to point to within one beamwidth
(10 degrees) of the satellite. A preferred performance objective would be to point to within
half a beamwidth (5 degrees) of the satellite. Additionally, it should be clear from this
example that it is desirable to go beyond simply stabilizing the payload about the vertical
as the satellite will not always be directly overhead. The electro-magnetic considerations
(antenna pattern, transmitter specifications, etc.) of this problem are not part of this work.

Figure 1.1: As an application example, a small buoy performing directional communication
with a satellite in the presence of waves.

Given such a problem, we would like a framework to understand and answer the following
questions:

1. How much of the sky can be covered by such a system?

2. How accurately can the payload be pointed?

3. What are the implications on the selection of the structure, actuators, and sensors for
the device?

4. Which control laws are appropriate and effective at controlling such a system?

5. What are the critical parameters which drive the design of the system?

In addition to the above requirements, the requirement to point the payload at a non-
vertical angle favors a solution which uses buoyant moments to drive the payload to the
desired attitude. Buoyant moments are the only moments available to the system which
can maintain the payload at a non-vertical angle in static equilibrium. Using thrusters or
flapping fins as actuators will not accomplish the shifting of buoyancy required for static
equilibrium at off vertical angles. This need to shift the location of the center of buoyancy
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and center of mass of the system is the primary motivation for selecting a jointed buoy to
aim the payload.

The ability for the system to put itself in a configuration to passively point in the desired
direction, once all the transients have decayed away, results in an active controller which is
only responsible for transient suppression, disturbance rejection, and small corrections to
the steady state condition. This allows the active controller to be significantly simpler and
more effective.

1.2 Dissertation Outline

This dissertation is organized as follows. In Chapter 2 the buoy model is derived. The
kinematics of the universal joint connecting the buoy payload and housing are also presented.

In Chapter 3, the results of qualitative experiments undertaken to validate and supply
parameters for the analytical buoy model derived in Chapter 2 are presented. Because drag
is a major source of model uncertainty for the buoy, a pair of experiments was conducted
to inform the choice of, and validate, the implemented drag model. The first experiment
used a small non-instrumented cylinder. The second experiment was performed with a
larger instrumented cylinder in wave tanks at the US Naval Academy’s Hydrodynamics
Laboratory. These experimental results were compared with numerical simulation results,
and the model was refined accordingly.

Chapter 4, provide a short introduction to sliding mode control, and in particular, pro-
vides a mathematical justification of its robustness to parametric uncertainty and external
disturbances. Indeed, formulating the sliding mode controller properly is a key step, as il-
lustrated by a cautionary example of how not to implement a sliding mode controller. Also
in this chapter, the nominal prototype buoy configuration we focus on is described and the
feedback controllers for the actuated joint connecting the payload and housing are presented.
Our primary focus is on a sliding mode controller with feed-forward term (SMC+FF), but
a proportional-integral-derivative controller with feed-forward term (PID+FF) is also de-
scribed for purposes of comparison. A metric for evaluating closed-loop system performance,
the composite payload pointing error, is also introduced.

In Chapter 5, numerous simulation results are presented to illustrate the performance
of these controllers. In particular, the following effects are considered: (1) control update
rate, (2) feedback latency, (3) active and passive yaw damping, (4) joint acceleration limits,
(5) initial conditions, (6) commanded pointing angle, (7) SMC+FF vs. PID+FF control,
and (8) the effects of regular and irregular ocean waves.

In Chapter 6, various topics arising in the development and implementation of the buoy
model are discussed, including (1) the use of perfect state information, (2) the suggested
CM location, (3) a comparison between the universal joint and elevation-over-azimuth joint
configurations, and (4) a discussion of how “added mass” would affect the buoy.

In Chapter 7 we summarize the conclusions drawn from the research and provide sug-
gestions for future work.

A collection of appendices is also provided. Appendix A presents the derivation of the
equations used to describe the sea in the presence of ocean waves using a first order linear
model. We are interested in the wave elevation and fluid velocity as functions of time and
position. Equations for both regular sinusoidal and irregular waves are included, as is the
process for generating models of irregular waves with a spectral content similar to that of
the open ocean.

3



Although we ultimately settled on a particular prototype buoy configuration for the bulk
of the numerical studies, prior to that we had developed a family of buoy configurations
based on the NATO size A sonobuoy dimensions. This buoy family consists of four buoys
of the same size and similar mass distribution, except with the joint at different locations.
The details and rationale for these crude “J Series” buoy models are presented in Appendix
B.

Appendix C presents the details of the low level actuator controller which models the
physical actuators and their associated control circuitry. Like actual motor controllers,
this low level controller has a number of different modes. Higher level controllers, like
the SMC+FF and PID+FF control laws, interact with actuators through these low level
controllers which enforce position, velocity and acceleration limits on the actuator.

Appendix D presents an alternative method of deriving and solving the dynamics and
kinematic equations for the two body system using constraint equations. As shown in
Chapter 2, the two-body buoy problem is simple enough that its dynamical equations can
be derived directly in an intuitively appealing way. However, for more than two bodies, a
direct derivation is more involved, and the method of constraint equations may provide a
more suitable tool to use.

Appendix E presents an analysis of using a tuned mass damper to improve a cylindrical
buoy’s passive response to vertical oscillation. This show that including a tuned mass
damper in the buoy’s structure has the potential to significantly improve is performance in
various sea states.

Appendix F Contains the detailed plots showing the large instrumented cylinder’s per-
formance in roll and pitch for the four included release tests.

1.3 Relevant Literature

There is a significant body of work on the practice of pointing antennas at satellites from
moving vehicles. A maritime example is described by Timothy et al. in their U.S. Patent
[27]. They describe an elevation over azimuth mechanism for pointing the antenna via a
pair of servo motors. They include provisions for sensing the antenna’s attitude directly
to improve servo stiffness. Finally, they use the pointing errors in the antenna to find the
direction of maximum signal strength. This example is typical in that it assumes the antenna
mass is small compared with the mass of the vessel. Therefore, the movement of the antenna
does not impart any motion on the vessel. Tseng and Teo present a fuzzy logic controller
for ship based antenna pointing in [28]. Here again an elevation over azimuth mechanism
is used and the antenna pointing dynamics do not affect the platform’s dynamics.

For the concept of pointing a directional antenna at a satellite from a floating buoy, the
closest match in the literature is by Frye et al. in their technical report on “Design and
Evaluation of Directional Antennas on Ocean Buoys” [6]. However, this work concentrates
on the RF design of the antenna and laboratory testing of a mechanical, azimuth only,
servo mechanism. This system was designed with an antenna beamwidth of ±15 degrees
in azimuth and elevation. It assumed the antenna would be mechanically steered with an
elevation over azimuth mechanism. It also assumed that the buoy would be large enough
that the motion of the antenna would not influence the motion of the buoy. The shape of
the buoy was assumed to be a large discus approximately 3 m in diameter.

Using a multibody buoy structure to position an antenna is proposed by Briguglio
in [5]. In this system the antenna is an omni-directional antenna and it is mounted on a
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four bar linkage with the flotation body in the middle and a counterweight on the other
end. This pantograph linkage unfolds by spring action and gravity from the buoy’s housing.
Its purpose is to raise the antenna to a sufficient height for a sensor to have a view over the
ocean waves, while at the same time, providing the sensor with isolation from the angular
displacement due to wind and waves. This is an implementation of a multibody buoy
for antenna stabilization, however, it is in no way suitable for solving the problem in our
notional scenario.

Developing a control strategy for the two body buoy requires a framework for solving
the dynamics of a multibody system. The approach we take (in Chapter 2) involves directly
solving for the dynamics of the buoy payload in terms of the housing body. This solution
is presented using a Lie group formulation similar to Galloway, Cortesi, and Justh in [22]
and Leonard in [16]. The advantage of this formulation lies in providing physical insight
into system.

Alternatively, multibody dynamics problems can be solved using a constraint equation
approach (which is discussed in Appendix D). This requires three steps: (1) derive the
equations of motion (EOM) for each body as if it is a single isolated body; (2) derive the
set of kinematic constraint equations which specify the relationships between the connected
bodies; and (3) simultaneously solve the combined system of EOMs and constraint equations
at each time step to determine the system’s trajectory. Nikravesh in [20] is the authoritative
reference on this approach.

Our two body buoy problem is fundamentally an attitude control problem. There is
a significant body of work on multibody attitude control of spacecraft and underwater
vehicles.

Leonard [16] presents the dynamics and control of a single body underactuated space-
craft and a single body underactuated underwater vehicle, and also uses a Lie group formu-
lation of the system to inform the choice of control laws. In particular, the use of roll and
pitch effects to drive a change in yaw motion is demonstrated. Another example involving
an underactuated underwater vehicle is discussed by Leonard in [17].

In [23], M. Romano and B.N. Agrawal discuss the dynamics and control of a dual body
spacecraft in which the two bodies are connected by a single degree of freedom rotational
joint. Their concept is to use the satellite as an optical relay to redirect a ground based
laser from one ground station to another. Some notable differences between this system and
our buoy system are: (1) In the spacecraft, both bodies need to be aimed at their respective
targets. (2) In the spacecraft the center of mass of both bodies is at the joint. Therefore
rotating the joint does not change the location of the system’s center of mass. (3) The joint
is a single degree of freedom joint in the spacecraft. (4) The spacecraft uses Variable Speed
Control Moment Gyros to manipulate the craft’s total angular momentum to control its
attitude.

L. S. Wang and P. S. Krishnaprasad, in [31], present the dynamics of a dual body
spacecraft connected by a three degree of freedom spherical joint. The spacecraft is con-
trolled by rotors on each body, including driven and damping rotors. Additional damping
is placed on the joint. The dynamics and control of this system is presented using a Lie
group formulation.

Our buoy problem can be differentiated from the cases presented above in that our buoy
must contend with the free surface effects of water. This includes the buoyant and drag
moments which are non-linear functions of buoy position and attitude. For modeling ocean
waves and their effects on structures, Faltinsen [8] is an excellent reference. Additionally,
Fossen [9] is another useful reference.
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For discussion and guidance on implementing numerical six DOF simulations there are
many references used by aeronautical engineers. Stevens and Lewis [26] is an excellent
example of one such reference. It covers the modeling, dynamics, and kinematics of a 6
DOF system in a variety of coordinate systems (NED, WGS84, and ECEF). It also includes
an excellent summary of the relationships between Euler angles, direction cosine matrices,
and quaternions.

We considered three principal control schemes for our buoy problem: Proportional-
Integral-Derivative (PID), the Linear Quadratic Regulator (LQR) and its variants, and
Sliding Mode Control (SMC).

PID control is one of the most widely implemented control schemes due to its simple
implementation and robust performance with respect to disturbances for single variable
systems. Much has been written about PID control in both its continuous and discrete
forms. Dorf [4, Chapter 12] and Ogata [21, Section 3.5] introduce the PID controller in
its continuous and discrete form respectively. An application note [1] for a Maxon brand
positioning controller describes a PID implementation which is representative of current
best practice in industry, including the controller’s anti-windup features and the benefits of
using a feed forward gain to improve the system’s response.

Prior to settling on the sliding mode controller, we considered various forms of the
Linear Quadratic Regulator (LQR). Again Stevens and Lewis [26, Chapter 5.3] is useful as it
presents many practical considerations for using LQR controllers. Additionally, [26, Chapter
5.4] introduces a linear quadratic tracker for tracking non-zero reference signals. A linear
quadratic integrator (LQI) presented by Young and Willems in [33] is another method to
track non-zero reference signals. This LQI approach is implemented by MATLAB’s LQI
function. Friedland [11] is another excellent reference on LQR control.

We have found sliding mode control to be a highly effective approach for our buoy
problem. SMC is introduced in Khalil [14, Section 14.1]. Utkin [29] is a very complete
treatment of sliding mode control. In particular [29, Chapter 5] covers SMC in linear
systems and [29, Chapter 8] discusses solutions to the chattering problem. Finally, Young,
Utkin and Ozguner in [13] provide a concise summary of some advanced sliding mode topics.

Due to the small buoy size proposed in this research, the system is sensitive to the high
frequency energy of the ocean waves at frequencies higher than is typically reported in the
literature. Some of the highest reported spectral content is presented by Robinson et. all
in [30]. Their spectral estimates are limited to data collected up to 2.2 rad/sec (a 2.9 second
period). While this is significantly higher than the 1 rad/sec presented by most texts, it is
still significantly short of the resonant frequency for the size buoys envisioned here.

Steel and Earl present work on estimating wave spectra from magnetic field measure-
ments made by a buoy in [25]. Here the buoy was 3 meters in diameter and spectral content
was only characterized up to 0.68 rad/sec (a period of 10 seconds).

1.4 The Design Process

The design process comprised the following steps:

1. Pick desired primary system requirements for system geometry and performance.

2. Derive, from first principles, the system dynamics to build a “truth model” in simu-
lation. This truth model is used to develop and test the proposed solutions. As part
of this model development process, it is important to:
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(a) Identify areas of the model with the most uncertainty or in which significant
approximations are made.

(b) Devise experiments to reduce the model’s uncertainty (or at least bound it) and
validate any significant approximations.

(c) Quantitatively and qualitatively compare the tuned model with reality as much
as possible.

3. Use the “features” of the system dynamics to inform the selection of the structure,
actuators, and control schemes of the device. In this problem, the “features” of the
dynamics include the effects of symmetry, the existence of a preferred direction due
to gravity and buoyancy, and the significant rotational coupling between the axes.

4. Use the truth model to explore the limits of the proposed solution by numerical
simulation.

5. Repeat some or all of these steps as time, money and performance permit or require
to refine the model and solution.

The possibilities for the physical implementation to solve the problem posed by the
motivational example encompass a wide variety of configurations. Figure 1.2 shows some
of the design choices which could have been made in attempting to solve this problem. The
choices which are presented in detail in this work are in yellow. Some alternate choices
which also presented here (though in less detail) are shown in blue.

31

Design Choices
(where else this could have gone)

Multi-Body Single BodyFlexible StructuresInflatable StructuresBasic Structure Type:

Fins Tuned Mass DamperMass / Actuator DistributionPassive Control Features:

Joint Actuated ThrustersFlapping FinsActuator Type:

High Aspect Ratio Shapes
(cylinder, spar, etc.)

Basic Structure Shape: Low Aspect Ratio Shapes
(ring buoy, flat sheet, etc.)

El. Over Az. Joint Universal Joint Spherical JointJoint Type:

SMCPID LQR / LQIController Type:

Direct Dynamics Solution Method of Constraint Equations.Simulation Type:

Figure 1.2: Some of the high level design choices selected in this work. Choices in yellow
are presented in detail, choices in blue were considered and tested as alternatives, but
ultimately not used in the detailed solution. Choices in gray were not considered in detail.
Some analysis was performed for the tuned-mass-damper, but only applying damping to
the vertical oscillation of a cylinder and not for the two body buoy system.
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Chapter 2

Model Derivation

This chapter presents the numerical simulation model for the buoy system. Section 2.1
introduces the notation used to describe the geometry of the problem. Section 2.2 derives
a self-contained system for the dynamics of the coupled two body buoy system, including
the inertial effects between the bodies, and external forces and moments.

The external forces and moments that are applied to the system are buoyancy, gravity,
and drag. The buoyancy calculations are covered in Section 2.3, gravity in Section 2.4 and
drag in Section 2.5.

Up to this point in the model derivation, the details of the joint configuration have
not been required. In Section 2.7, the kinematics of a universal joint is derived. The
numerical simulation also models a low level controller for each joint axis actuator. The
highlights of this low level controller are presented in Section 2.8. The details of the low level
controller implementation are in Appendix C. Section 2.9 derives some simple expressions
for estimating the resonant frequency at which the buoy will bob up and down in the water.
Finally, Section 2.10 summarizes the equations and procedure for implementing a numerical
model of the buoy system.

Hydrodynamic “added mass” effects are not explicitly included in this derivation and
added mass effects were not included in the numerical simulations. A further discussion of
how added mass would effect the buoy and the rationale for neglecting it in this work is
presented in Section 6.5.

2.1 Simulation Geometry

2.1.1 Buoy Geometry

The buoy system is modeled as a pair of rigid cylinders connected by a joint. Body 1 is the
buoy housing (the lower cylinder). Body 2 is the payload (the upper cylinder). Each body
has a body coordinate system located on its bottom face. The body coordinate system’s Z
axis points along the long axis of the body. Each body also has a pivot point associated
with it. The pivot point on the housing is described by the vector RJ1 in the housing
coordinate system. The pivot point on the payload is specified by the vector RJ2 in the
payload coordinate system.

The bodies’ roll and pitch angles are measured about the cylinder’s X and Y axes
respectively with respect to the horizontal.

The navigation (or global) coordinate system used in this model is a tangent plane
coordinate system of the East-North-Up type. The navigation system’s x axis points east,
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its y axis points north, and it z axis points up. The x-y plane of the navigation coordinate
system is located at the mean water height of the ocean surface. Additionally, in this
research, yaw angles are referenced counter-clockwise from the x axis (East) to keep all
calculations in right handed coordinate systems.

Figure 2.1 shows the major variables used in defining the buoy geometry. Table 2.1 lists
the geometry variables in the model. Upper case vectors are in the housing or payload body
frames. Lower case vectors are in the navigation frame. The attitudes of each cylinder are
tracked and specified using direction cosine matrices.

J2

J1

cm1

cm2

cb1

cb2

Figure 2.1: The significant coordinate systems for the buoy model. Vectors in the housing
and payload reference frames are upper case. Vectors in the navigation reference frame are
lower case.

The values associated with each body include: mass, radius, length, center of mass (CM)
location, an inertia tensor, and the location of the pivot point.
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2.1.2 Vertical Angle vs. Elevation Angle

When discussing traditional pan/tilt units typically used for camera or antenna pointing
applications, it is common to specify the angle in the vertical plane as the elevation angle.
The elevation angle specifies the angle above the horizon. At an elevation angle of zero,
the system is pointing at the horizon. An elevation angle of 90 degrees means the system is
pointing straight up at the zenith. Throughout this research, angles in the vertical plane are
referred to as vertical angles. The vertical angle is NOT the same as the elevation
angle. The vertical angle is measured from the zenith. Thus it measures deflection away
from vertical. If the vertical angle is zero then the system is pointing straight up. A vertical
angle of 90 degrees is pointing at the horizon. A similar distinction can be made about the
joint angles. A joint vertical angle can be used to described the amount of misalignment
between the housing and payload sides of the joint. If the joint vertical angle is zero, then
the housing and payload long axes are co-linear. Likewise for a joint vertical angle of 90
degrees, the housing and payload long axes are perpendicular to each other.

2.2 Model Dynamics (6DOF)

This section derives a self-contained system for the rotational and translational accelerations
of the buoy system. The buoy is modeled as a pair of rigid bodies connected by a joint.
This self-contained system can then be numerically integrated forward in time to generate
the buoy velocity and position trajectories.

A two body system has 12 degrees of freedom (DOFs). Each body has 3 translational
and 3 rotational DOFs. A joint connecting the two bodies, which only allows rotation,
constrains relative translation between the bodies. This removes 3 DOFs from the system.
If the joint is a 3 axis joint, then no further reduction in the system’s DOFs occur. If the
joint is a two axis joint, then one more DOF is removed from the system, resulting in a two
body system with 8 degrees of freedom.

Consider a state vector for the full system given by xfull =
�
d0 φ2 φJ

�T
(xfull ∈ R8),

and an unspecified (for now) control input vector, u (u ∈ R2). In this state vector the
translational degrees of freedom are specified by the coordinates of the joint in the navigation
frame, d0. The rotational degrees of freedom are specified by the vector of the payloads
attitude angles in the navigation frame, φ2, and the vector of joint axis angles, φJ .

The dynamics for such a system will evolve according to a nonlinear system with the
general form

ẍfull(t) = f (xfull(t), ẋfull(t), u(t), u̇(t), ü(t), t) , (2.1)

where we have assumed that the effects of derivatives higher than those in (2.113) are
negligible and we assume that ü(t) is piecewise continuous.

This is the system that the numerical simulation must model accurately to serve as a
truth model for system development. The controller design will require a simplified form of
this model.

For the purposes of model derivation and numerical simulation, the rotational states are
calculated using direction cosine matrices (DCMs) instead of the individual angles. While
this increases the number of variables it does not change the fundamental number of degrees
of freedom represented by the truth model.

11



2.2.1 Variables and Matrix Properties

Table 2.1 defines the variables used in this dynamics and kinematic analysis.

Table 2.1: The variables used for the model’s dynamics analysis.
Parameter Joint Housing Payload

Body CM Location (body frame) Rcm1 Rcm2

Body CB Location (body frame) Rcb1 Rcb2

Body Joint Location (body frame) RJ1 RJ2

Attitude Direction Cosine Matrix B B1 B2

Rotational Velocity Vector (body frame) Ω Ω1 Ω2

Rotational Acceleration Vector (body frame) Ω̇ Ω̇1 Ω̇2

Body Inertia Tensor About the Body CM Jh Jp
Body Inertia Tensor About the System CM J1 J2

Joint Torques (body frame) T1 T2

External Torques (body frame) Text1 Text2

Body CM (navigation frame) r1 r2
Joint Forces (navigation frame) f1 f2
External Forces (navigation frame) fext1 fext2
Body Mass m1 m2

Joint Position (navigation frame) d0

Joint to Body CM Vector (body frame) D1 D2

The kinematic relationship between orientation and angular velocity is

Ḃ = BΩ̂, (2.2)

where B is a member of the Special Orthogonal Group SO(3), where

SO(3) =
¦
B ∈ R3×3 |BTB = I and det B = 1

©
. (2.3)

Note that a direction cosine matrix is automatically an element of SO(3).
The hat operator transforms a vector in R3 into a skew symmetric matrix, ie.,

â =

264 0 −a3 a2
a3 0 −a1
−a2 a1 0

375 . (2.4)

In addition,
âb = a× b, (2.5)

where × denotes the vector cross product, and we have

âa = 0. (2.6)

Since â is skew symmetric, we have
âT = −â, (2.7)

and we also have the identity
BâBT = dBa. (2.8)

where B ∈ SO(3).
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The joint DCM is related to the housing and payload attitudes by:

B = BT
1 B2. (2.9)

A vector Q in one coordinate system can be converted to a vector q in an alternate
coordinate system using a homogeneous transformation matrix (HTM). The HTM is a
member of the Special Euclidean Group SE (3). Members of SE (3) can be used to apply
translations and rotations to rigid bodies. In the HTM the direction cosine matrix, B,
applies the rotation, and the vector, r0, applies the translation.�

q
1

�
=

�
B r0
0 1

� �
Q
1

�
, (2.10)

or equivalently, q = BQ + r0. If the vector is a “free” vector, i.e. not tied to a particular
point in the coordinate system, then the only the rotational part of the transformation needs
to be applied. As an example, consider a force vector in the housing coordinate system,
Fh. Fh can be converted to the payload coordinate system through the joint direction
cosine matrix by Fp = BTFh and back by Fh = BFp. The force could be specified in the
navigation frame by fh = B1Fh and fp = B2Fp.

2.2.2 Rotation

To calculate and propagate the rotational states of the buoy system we need an expression
for the payload’s rotational acceleration, Ω̇2, as a function of the payload rotational velocity,
and the joint axes’ position, velocity and acceleration. With this expression we will be able
to integrate the payload’s attitude forward in time. To derive this expression, first we will
use the kinematic relationships to find expressions for the housing rotational velocity and
acceleration, which will allow us to substitute them into the dynamics equations to eliminate
the housing variables from the expression for the payload rotational acceleration.

2.2.2.1 Rotational Kinematics

We desire an expression for the housing rotational velocity Ω1, in terms of the joint and
payload rotational velocities, Ω and Ω2. Starting by differentiating (2.9) using (2.2) yields

B = BT
1 B2

Ḃ = ḂT
1 B2 + BT

1 Ḃ2

BΩ̂ =
�
B1Ω̂1

�T
B2 + BT

1 B2Ω̂2

BΩ̂ = Ω̂T
1 BT

1 B2 + BT
1 B2Ω̂2

BΩ̂ = Ω̂T
1 B + BΩ̂2

Ω̂T
1 B = BΩ̂−BΩ̂2

Ω̂T
1 = B

�
Ω̂− Ω̂2

�
BT

Ω̂1 = B
�
Ω̂2 − Ω̂

�
BT

Ω̂1 = ÛB (Ω2 −Ω)

Ω1 = B (Ω2 −Ω) . (2.11)

We used the identity in (2.8) to get from the 8th to the 9th line.
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We can differentiate (2.11) to find the housing acceleration vector, Ω̇1, as:

Ω̇1 = Ḃ (Ω2 −Ω) + B
�
Ω̇2 − Ω̇

�
= BΩ̂ (Ω2 −Ω) + B

�
Ω̇2 − Ω̇

�
= BΩ̂Ω2 + BΩ̇2 −BΩ̇

= B
�
Ω̂Ω2 + Ω̇2 − Ω̇

�
. (2.12)

2.2.2.2 Rotational Dynamics

Next we can find expressions for the rotational dynamics of the system. Starting by differ-
entiating the angular momentum expression, h2 = B2H2 with H2 = J2Ω2, gives

dh2

dt
= B2

�
J̇2Ω2 + J2Ω̇2 + Ω̂2J2Ω2

�
, (2.13)

so including the J̇ terms in Euler’s equations of rigid motion gives:

J1Ω̇1 + J̇1Ω1 + Ω1 × J1Ω1 = T1 + Text1 , (2.14)

J2Ω̇2 + J̇2Ω2 + Ω2 × J2Ω2 = T2 + Text2 , (2.15)

where the torques T1 and T2 are the joint torques on each body. The torques Text1 and
Text2 are the external torques on each body (buoyancy, drag, etc.). All these toques are
expressed in their respective body coordinates. The joint torques, when expressed in global
coordinates, are equal and opposite,

τ1 = B1T1, (2.16)

τ2 = B2T2, (2.17)

τ1 = −τ2. (2.18)

Combining (2.14) and (2.15) via (2.18) results in a fundamental equation of rotational
motion for the buoy system of:

B2

�
J2Ω̇2 + J̇2Ω2 + Ω̂2J2Ω2 −Text2

�
= −B1

�
J1Ω̇1 + J̇1Ω1 + Ω̂1J1Ω1 −Text1

�
. (2.19)

Next we need to find an expression for the rotational acceleration of the payload, Ω̇2,
in terms of all the joint states, and the payload attitude and velocity.

J̇2Ω2 + J2Ω̇2 + Ω̂2J2Ω2 −Text2 = −BT
2 B1

�
J1Ω̇1 + J̇1Ω1 + Ω̂1J1Ω1 −Text1

�
J2Ω̇2 = −Ω̂2J2Ω2 − J̇2Ω2 −BT J̇1Ω1 −BTJ1Ω̇1 −BT Ω̂1J1Ω1 + BTText1 + Text2 . (2.20)

Substituting (2.12) in for Ω̇1 gives

J2Ω̇2 = −Ω̂2J2Ω2 −BTJ1B
�
Ω̂Ω2 + Ω̇2 − Ω̇

�
−BT Ω̂1J1Ω1 − J̇2Ω2 −BT J̇1Ω1 + BTText1 + Text2 , (2.21)

so that �
J2 + BTJ1B

�
Ω̇2 =− Ω̂2J2Ω2 −BTJ1B

�
Ω̂Ω2 − Ω̇

�
−BT Ω̂1J1Ω1

− J̇2Ω2 −BT J̇1Ω1 + BTText1 + Text2 . (2.22)
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Substituting (2.11) to eliminate Ω1,�
J2 + BTJ1B

�
Ω̇2 = −Ω̂2J2Ω2 −BTJ1B

�
Ω̂Ω2 − Ω̇

�
− J̇2Ω2 −BT J̇1B (Ω2 −Ω)

−BT ÛB (Ω2 −Ω)J1B (Ω2 −Ω) + BTText1 + Text2

= −Ω̂2J2Ω2 −BTJ1B
�
Ω̂Ω2 − Ω̇

�
− J̇2Ω2 −BT J̇1B (Ω2 −Ω)

−BTBÚ(Ω2 −Ω)BTJ1B (Ω2 −Ω) + BTText1 + Text2 , (2.23)

resulting in�
J2 + BTJ1B

�
Ω̇2 =− Ω̂2J2Ω2 −BTJ1B

�
Ω̂Ω2 − Ω̇

�
−
�
Ω̂2 − Ω̂

�
BTJ1B (Ω2 −Ω)

− J̇2Ω2 −BT J̇1B (Ω2 −Ω) + BTText1 + Text2 .

(2.24)

Equation (2.24) is significant because given the Joint Parameters (B, Ω, and Ω̇) as
functions of time, and the initial conditions for Ω2, we can determine Ω2 for all future time.
We can then compute Ω1 from (2.11), and integrate the payload attitude forward in time
using

Ḃ2 = B2Ω̂2, (2.25)

from the initial conditions on B2. This in turn gives us the housing attitude as

B1 = B2B
T . (2.26)

Note that in (2.24) the moment of inertia terms, J1 and J2, are about the system CM.
These inertia terms will change as a function of the joint position.

2.2.3 Calculating the J and J̇ Terms

In (2.24) the terms J̇1 and J̇2, need to be calculated. These are time rates of change for
the housing and payload moments of inertia about the buoy system’s center of mass. The
location of this center of mass changes as a the joint position changes.

The first step is to calculate the system CM location in terms of joint position and the
housing and payload CMs. The system CM location in housing body coordinates is given
by

Rcmsys1 =
m1Rcm1 +m2 [RJ1 + B (Rcm2 −RJ2)]

m1 +m2
, (2.27)

where Rcm1 and RJ1 are the housing CM and joint locations in the housing body coordinate
system. Also, Rcm2 and RJ2 are the payload CM and joint locations in the payload body
coordinate system. Similarly, the system CM location in payload body coordinates is given
by

Rcmsys2 =
m2Rcm2 +m1

�
RJ2 + BT (Rcm1 −RJ1)

�
m1 +m2

. (2.28)

Next we calculate the moments of inertia for the housing and payload about the system
CM. Recall that the parallel axis theorem for inertia tensors is

Jdisp = Jcm +m
�
RTRI−RRT

�
, (2.29)
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where Jdisp is the inertia tensor about the displaced point, Jcm is the inertia tensor about
the body CM, R is the vector between the body CM and the displaced point, and I is the
3x3 identity matrix.

So given the housing CM and system CM in housing body coordinates we can calculate
the housing’s inertia about the system CM as

R1 = Rcm1 −Rcmsys1

= Rcm1

�
1− m1

m1 +m2

�
− m2

m1 +m2
[RJ1 + B (Rcm2 −RJ2)] , (2.30)

J1 = Jh +m1

�
RT

1 R1I−R1R
T
1

�
, (2.31)

where Jh is the inertia tensor of the housing about the housing CM. Similarly, the payload
inertia about the system CM is given by

R2 = Rcm2 −Rcmsys2

= Rcm2

�
1− m2

m1 +m2

�
− m1

m1 +m2

�
RJ2 + BT (Rcm1 −RJ1)

�
, (2.32)

J2 = Jp +m2

�
RT

2 R2I−R2R
T
2

�
, (2.33)

where Jp is the inertia tensor of the payload about the payload CM.

There are two methods of finding time rates of change of the inertia tensors J1 and J2.
The first method takes the derivative numerically. Since J1 and J2 are calculated at each
time step, J̇1 and J̇2 can be approximated by finding the difference between the inertia
values at the current and previous simulation time steps and dividing by the simulation
step size.

Alternatively, J̇1 and J̇2 can be calculated analytically. Differentiating (2.29) with
respect to time gives

J̇disp = J̇CM +
d

dt

�
m
�
RTRI−RRT

��
. (2.34)

If we assume that the mass and mass distribution internal to the body is not changing then
(2.34) reduces to

J̇disp = m
�
2RT ṘI− ṘRT −RṘT

�
. (2.35)

So to find J̇1 and J̇2 we need to calculate Ṙ1 and Ṙ2 and use (2.35) appropriately. Differ-
entiating (2.30) and (2.32) with respect to time gives

Ṙ1 = −m2Ḃ (Rcm2 −RJ2)

m1 +m2
, (2.36)

Ṙ2 = −m1Ḃ
T (Rcm1 −RJ1)

m1 +m2
. (2.37)

Equations (2.36) and (2.37), along with (2.30) and (2.32), can be substituted into (2.35)
to find the change in inertia terms at the current time step. Because of how the problem
was formulated, the only time varying term is the joint velocity.
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2.2.4 Translational Dynamics

The CM positions r1 and r2 of the bodies are given (in the navigation coordinate system)
by

r1 = d0 + B1D1, r2 = d0 + B2D2, (2.38)

where d0 is the joint position. The joint position d0 is a quantity we still need to solve for.
We also have

mr0 = m1r1 +m2r2, (2.39)

where m = m1 + m2 is the total mass and r0 is the CM of the coupled system. As with
the torques in the rotational analysis, we will distinguish between the joint forces and the
external forces on each body. These are designated f1, f2, fext1 , and fext2 . These forces are
expressed in the navigation coordinate system, so the joint forces on each body are equal
and opposite. Writing Newton’s second law for each body in the translational system gives

m1r̈1 = f1 + fext1 , (2.40)

m2r̈2 = f2 + fext2 . (2.41)

Using the joint forces to combine these equations results in

m1r̈1 − fext1 = −m2r̈2 + fext2 . (2.42)

We can differentiate (2.38) twice to find the acceleration of the individual bodies as
functions of the joint translational acceleration and body attitudes:

m1

�
d̈0 + B̈1D1

�
− fext1 = −m2

�
d̈0 + B̈2D2

�
+ fext2 , (2.43)

so

md̈0 = −
�
m1B̈1D1 +m2B̈2D2

�
+ fext1 + fext2 ,

or

md̈0 =−m1

�
Ḃ1Ω̂1 + B1

˙̂
Ω1

�
D1

−m2

�
Ḃ2Ω̂2 + B2

˙̂
Ω2

�
D2

+ fext1 + fext2 .

(2.44)

All the terms in (2.44) have been found in solving for the rotational dynamics. At
each simulation step we calculate the rotational dynamics first and then the translational
dynamics. We only need the initial conditions of the joint position and velocity, d0 and ḋ0,
to be able to integrate d0 forward in time. Once d0 and the rotational terms are known,
the position and attitude of all parts of the buoy system are known.

2.3 Buoyant Forces and Moments

2.3.1 The Buoyant Cases

To calculate the buoyant forces and moments on the housing and payload cylinders, one
must calculate the housing and payload cylinder’s buoyant force and the location of the
center of buoyancy. The buoyant force is weight of the water displaced by the cylinder and
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the center of buoyancy is located at the volumetric center of the displaced water. In the
buoyancy calculation we assume that the water’s surface is locally smooth and horizontal
in the immediate vicinity of the buoy.

The buoyant forces and moments can result from one of several different positions and
orientations with respect to the waterline. For a single cylinder, there are 5 cases:

1. The cylinder is completely out of the water. The buoyant calculations in this case are
trivial.

2. The cylinder is completely submerged. The buoyant calculations in this case are
trivial.

3. The cylinder is floating at the surface such that the waterline intersects only the
cylindrical face of the cylinder.

4. The cylinder is floating at the surface such that the waterline intersects one end face
in addition to the cylindrical face.

5. The cylinder is floating at the surface such that the waterline intersects both end faces
in addition to the cylindrical face.

Additionally, in all the non-trivial cases (3 through 5) it is possible for the cylinder to
be upside down. All these cases are illustrated in the inclined coordinate system in Figure
2.2.

It is desirable to have a method for calculating the submerged volume and center of
buoyancy for all of the above cases.

2.3.2 The Inclined Coordinate System

Since the cylinders are symmetric about their long axes, the three dimensional buoyancy
calculation can be reduced to a two dimensional problem in an intermediate coordinate
system which we will call the “inclined coordinate system.” The inclined coordinate system
is found by rotating the cylinder’s body coordinate system about its Z axis, until the body’s
Y axis is parallel to the water surface (the navigation coordinate system’s x-y plane). This
does not change the physical location of the center of buoyancy in the navigation frame,
because of the cylinder’s symmetry about its Z axis. This rotation provides a much more
convenient coordinate system for calculating the center of buoyancy and the submerged
volume of the cylinder. All of the illustrations in Figure 2.2 show the cylinder in the
inclined coordinate system.

Section 2.3.3 derives the cylinder’s center of buoyancy in the inclined coordinate system.
It is then necessary to transform the center of buoyancy into the body coordinate system
for use in the cylinder model. For this analysis we define some direction cosine matrices
with the following notations.

The direction cosine matrix Bb/i converts a vector in the inclined coordinate system to
the cylinder’s body coordinate system. The inclined and body coordinate systems have the
same origin.

The cylinder’s attitude in the navigation frame is specified by the DCM Bn/b. To find
Bb/i, we first check to see if the body coordinate system is already the inclined coordinate
system. This will occur when there is no roll about the cylinder’s X axis, i.e. Bn/b(3, 2) = 0.
In this case Bb/i equals the identity matrix.
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Figure 2.2: The possible cases for calculating the buoyant force and center of buoyancy.
Cases 1 and 2 are have trivial solutions. Cases 3 through 5 are more complicated and have
alternate cases (3a, 4a, and 5a) where the cylinder is upside down. The x’ and z’ axes are
in the inclined coordinate system.

If the body coordinate system can not be used as the inclined coordinate system, then
the inclined coordinate system will use the same Z axis vector as the body coordinate system.
We first calculate the DCM Bn/i which describes the attitude of the inclined coordinate
system in the navigation frame from

Bn/i =
�
xi yi zi

�
, (2.45)
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where

zi =

264Bn/b(1, 3)

Bn/b(2, 3)

Bn/b(3, 3)

375 , (2.46)

yi =

266664
�

1 +
�

Bn/b(1,3)

Bn/b(2,3)

�2�−1/2
−Bn/b(1,3)

Bn/b(2,3)

�
1 +

�
Bn/b(1,3)

Bn/b(2,3)

�2�−1/2
0

377775 , (2.47)

xi = yi × zi. (2.48)

Once Bn/i has been found, Bb/i can be found from

Bb/i = BT
n/bBn/i. (2.49)

2.3.3 Submerged Volume and Center of Buoyancy Calculations

To calculate the submerged volume and its center, the locations of cylinder “vertices” in the
incline plane are calculated. The matrix V is built using the coordinates of the vertices in a
form that is compatible with applying coordinate transforms using an SE(3) homogeneous
transformation matrix (HTM),

V =

26664R −R −R R
0 0 0 0
0 0 L L
1 1 1 1

37775 , (2.50)

where R and L are shown in Figure 2.3.
The buoyant case is determined by calculating the vertices’ location in the navigation

frame to determine which vertices are submerged by

v = CHTMV, (2.51)

where

CHTM =

�
Bn/i rbody

0 1

�
, (2.52)

rbody = rcm −Bn/bRcm. (2.53)

Next the coordinates of where the waterline intersects the cylinder are calculated in the
body frame. The trivial cases of completely submerged or completely clear of the water
are checked first. If all the vertices, specified in v, have negative z components then the
cylinder is completely submerged and

Vsub = πR2L, (2.54)

Rcb =

264 0
0
L/2

375 . (2.55)

20



L

2R

X

Z

V1

V2

V4

V3

v4z

v1z

v3z

v2z

dx

Z(x)

Figure 2.3: The key parameters for the integration of the submerged volume and center of
buoyancy. The vertices used for this calculation are labelled V1 through V2.

If all the z components of the vertices are positive then the cylinder is completely out
of the water, Vsub = 0, and Rcb is undefined but set to zero for simulation purposes.

Otherwise the cylinder is partially submerged and we need to find where the water line
intersects the cylinder. This is accomplished by checking the z coordinate of vertices in the
navigation frame, and finding the edge segments where one vertex is above the water and
the other is below the water. We define v1z, v2z, v3z, and v4z as in Figure 2.3.

If sign(v1z) 6= sign(v2z), then the waterline intersects the bottom face of the cylinder
between vertices 1 and 2. Therefore one of the waterline intersection points in the inclined
coordinate system is given by

WL1−2 =

264R �1− 2 |v1z |
|v1z |+|v2z |

�
0
0

375 . (2.56)

If sign(v2z) 6= sign(v3z), then the waterline intersects the left face of the cylinder be-
tween vertices 2 and 3. Therefore one of the waterline intersection points in the inclined
coordinate system is given by

WL2−3 =

264 −R
0

L |v2z |
|v2z |+|v3z |

375 . (2.57)

If sign(v3z) 6= sign(v4z), then the waterline intersects the top face of the cylinder be-
tween vertices 3 and 4. Therefore one of the waterline intersection points in the inclined
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coordinate system is given by

WL3−4 =

264R �−1 + 2 |v3z |
|v3z |+|v4z |

�
0
L

375 . (2.58)

If sign(v4z) 6= sign(v1z), then the waterline intersects the right face of the cylinder
between vertices 4 and 1. Therefore one of the waterline intersection points in the inclined
coordinate system is given by

WL4−1 =

264 R
0

L |v1z |
|v1z |+|v4z |

375 . (2.59)

Two of the four equations (2.56) - (2.59) will be used, depending on which two sides the
waterline intersects. WLa will refer to the first intersected segment in the above list and
WLb the second.

Next we can calculate the slope of the waterline in the inclined coordinate systems as

swl =
WLbz −WLaz
WLbx −WLax

. (2.60)

If WLbx = WLax then swl is either positive or negative infinity and the model sets swl to
± 1e17.

Next, the submerged volume is integrated numerically, by creating an array X of x
coordinates from −R to R. From this X array we calculate the Y (width) array and Z
(height) arrays. All operations listed below are element by element operations. The values
in the Z array are limited to the range 0 to L. nx is the number of x points used in the
approximation of the cylinder volume.

dx = 2R/nx, (2.61)

X = −R : dx : R, (2.62)

Y = 2
È
R2 −X2, (2.63)

Z ′′ = swlX + (WLaz − swlWLax) ,

Z =

8<: L if Z ′′ > L,
Z ′′ if 0 ≥ Z ′′ ≤ L,
0 if Z ′′ < 0.

(2.64)

The clamping of the Z values is to correctly handle cases 4 and 5 (and 4a/5a), where the
water line intersects an end face of the cylinder. Once the X, Y , and Z arrays have been
populated, the numerical integration to find the submerged volume and center of buoyancy
in the inclined plane can proceed using

Vsub =
nxX
k=1

dxYkZk, (2.65)

Rcbi =

26666664
nxX
k=1

dxXkYkZk/Vsub

0
nxX
k=1

dxZkYkZk/2Vsub

37777775 , (2.66)
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where Rcbi is the center of buoyancy in the inclined coordinate system.
However, if the cylinder is upside down (cases 3a, 4a, or 5a), then an alternate procedure

is needed to calculate the Z components and submerged volume. The cylinder is upside down
if Bn/b(3, 3) < 0. In this case

Zalt = L− Z, (2.67)

Vsub =
nxX
k=1

dxYkZ
alt
k , (2.68)

Rcbi =

26666664
nxX
k=1

dxXkYkZ
alt
k /Vsub

0

L−
nxX
k=1

dxZaltk YkZ
alt
k /2Vsub

37777775 . (2.69)

(2.70)

It is necessary to check that the submerged volume, Vsub is non-zero after these calcula-
tions. In some cases when one vertex is barely underwater, the above integration will still
return Vsub = 0 or close enough to zero that Rcbi explodes to infinity.

Finally, we convert the center of buoyancy from the inclined coordinate system back to
the cylinder’s body coordinate system by

Rcb = BT
i/bRcbi . (2.71)

2.3.4 Calculating the Buoyant Force and Moment

The buoyant forces and moments are calculated in the body frame by

Fbuoyant = Bb/n

264 0
0

ρgVsub

375 (2.72)

and
Mbuoyant = (Rcb −Rcm)× Fbuoyant. (2.73)

2.4 Gravity Forces and Moments

The gravity forces and moments are calculated separately for the payload and housing
cylinders. For the housing cylinder they are calculated by:

fgrav1 =

264 0
0

−m1g

375 , (2.74)

Mgrav1 = (Rcmsys1 −Rcm1)× (−Fgrav1) , (2.75)

where fgrav1 is the gravitational force vector in the navigation frame and Mgrav1 is the
gravitational moment vector in the body frame. g is the acceleration due to gravity. The
gravity force is converted to the body frame by Fgrav1 = BT

1 fgrav1 As in the buoyancy
section, Section 2.3, Rcmsys1 is the overall system’s CM and Rcm1 is the housing CM in the
housing’s coordinate system. To calculate gravity forces and moments on the payload, we
use the corresponding payload values (all subscript 1’s are replaced by 2’s).
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2.5 Drag Forces and Moments

2.5.1 The Basic Drag Model

The estimation and modeling of the drag forces and moments are the most uncertain com-
ponents of the model. As Sections 2.2 through 2.4 show, the inertial, buoyant, and gravity
components can all be solved directly and reliably from the geometry of the situation. The
modeling of the drag effects is fundamentally different. The drag model is an approximation
of a much more complicated phenomenon. There is a wide range of possible models which
could be used to approximate the drag effects. At one extreme a simple linear viscous
relationship could be used. At the other extreme a full FEA/CFD type model could be
implemented and rerun at each time step. The drag model presented in this section is on
the simpler end of the range of models. The choice and tuning of this drag model was
informed by the experiments described in Chapter 3.

Additionally, some more complicated and detailed drag models were considered ini-
tially. These are presented in Appendix ??. They were found to not provide a significant
improvement over the model implemented here.

It is important that the numerical simulation have a well behaved drag model. The drag
effects are the only source of damping for the numerical system. If the drag is not present,
or too small, the simulation will become numerically unstable.

The drag forces and moments are calculated for the payload and the housing. The
translational drag forces, in the navigation frame, are assumed to be linear in nature and
are calculated by:

Fdrag =

264−fsubCDfXY
LR 0 0

0 −fsubCDfXY
LR 0

0 0 −CDfZ
R2

375 Ṙcm, (2.76)

where L is the cylinder length, R is the cylinder radius, fsub is the submerged fraction of
the buoy, CDfXY

and CDfZ
are drag force scaling terms which includes the effects of density

and the coefficient of drag. Ṙcmi is the translational velocity vector for the cylinder’s CM.
The components of the drag moment vector, in the cylinder’s body frame, are calculated

using a quadratic function of the form

Mdragi = −sign(Ωi)fsubLRCDmiΩ
2
i , where i = X, Y, or Z. (2.77)

Here Ωi is the cylinder’s rotational velocity about its ith axis, and CDmi are drag moment
scaling terms which include the effects of density and the coefficient of drag. CDmX

= CDmY

because the body is a cylinder.

2.5.2 Passive Yaw Damping

The cylinder model can optionally specify a number of radial fins, to increase the drag
moment about the long axis of the cylinder. This implements a form of passive yaw control
for the buoy system. The fins are modeled as being at the buoy’s center of mass so they
have minimal effect on the buoy’s roll and pitch motions. Therefore for modeling purposes,
the simulation only applies a drag moment proportional to the cylinder’s yaw rate squared,
and in the opposite direction, applied about the cylinder’s long (Z) axis,

Myawpass = −sign(Ωz)nfins
1
8 CD ρwfin Ω2

z

�
(rcyl + lfins)

4 − r4cyl
�
, (2.78)

24



where Ωz is the cylinder rotation rate about its long axis, CD is the coefficient of drag for
a flat plate perpendicular to the fluid velocity, ρ is the density of the fluid, and rcyl is the
radius of the cylinder.

The value calculated for Myawpass is added to the Mdragz value to estimate the total
drag moment about the long axis of the cylinder.

2.5.3 Translational Drag Coupling into Rotation

In the dynamics model derived in Section 2.2, we assumed that there was no coupling
from the translational dynamics into the rotational dynamics. This assumption allows the
rotational dynamics to be solved independently at each time step and then the rotational
results are used to calculate translational dynamics. This assumption is not strictly true as
will be shown next.

Assume that the buoy has a translational velocity with respect to the fluid. The trans-
lational drag force does not act at the center of mass of the buoy, but rather at the center of
pressure. Given the symmetry of the buoy payload and housing cylinders, the translational
drag force can be approximated to act on the volumetric center of the submerged portion
of each body. This is the location of the body’s center of buoyancy, Rcb. Normally these
locations will not be located at the system’s center of mass, and therefore the translational
drag forces will apply a moment to the system. The moment due to translational drag can
be calculated for each body by

MdragT = (Rcb −Rcmsys)× Fdrag, (2.79)

where the terms on the right hand side are from the body the moment is being calculated
for. Recall that Rcmsys is the location of the system’s CM in the body’s coordinate system.

If the buoy is not experiencing significant translation with respect to the fluid, then
these effects can likely be ignored. In the numerical simulation, the MdragT value from the
previous time step is used when solving for the rotational dynamics.

2.6 Modeling Wave Effects

2.6.1 The 2-D Wave Models

The wave model implemented in the simulation describes a wave train of regular or irregular
waves propagating in a single direction in the navigation frame’s x-y plane. Appendix A
presents the basis for the wave elevation and fluid velocity equations, (2.80) and (2.82).
Appendix A also describes the procedure for generating irregular waves with a spectral
content approximating that of the open ocean. The wave modeling in this research draws
heavily on Fossen [9] and Faltinsen [8]. However, because of the extremely small size of the
buoy envisioned in this work compared with open ocean wavelengths, the methods typically
suggested in the literature for modeling surface wave effects on ocean structures are less
applicable.

Wave elevation, ζ, is the height of the water’s surface above its mean height, located at
z = 0 in the navigation frame. As a function of position and time, the wave elevation is
given by

ζ(x, y, t) =
NX
j=1

Aj sin[ωjt− kj (x cosβ + y sinβ) + φj ], (2.80)
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where Aj , ωj , kj , and φj are the amplitude, circular frequency, wave number, and phase
angle respectively of the component waves. x and y are the horizontal coordinates in the
navigation frame. β specifies the direction of seas referenced to the navigation frame’s x
axis.

The dispersion relationship relates the wave number, kj , and circular frequency, ωj . For
“infinite” water depth this relationship is given in [9] and [8, (2.18)] as

kj = ω2
j /g, (2.81)

where g is the acceleration due to gravity.
Since kj can be calculated from (2.81), the wave can be approximated by specifying one

or more values for Aj , ωj , and φj ; and a value for the direction of seas, β.
The velocity of a fluid particle in the navigation frame due to wave action can be

approximated by

vfluid(x, y, z, t) =
NX
j=1

ωjAje
kjz

264sin [ωjt− kj(x cosβ + y sinβ) + φj ] cosβ
sin [ωjt− kj(x cosβ + y sinβ) + φj ] sinβ

cos [ωjt− kj(x cosβ + y sinβ) + φj ]

375 , (2.82)

where vfluid is the fluid velocity in the navigation frame. x, y, and z are the particle’s
coordinates in the navigation frame. When z = ζ(x, y, t), (2.82) gives the velocity of the
fluid at the surface. Because of the exponential term in (2.82), particles that are significantly
below the mean height of the surface, z � 0, will have negligible velocity. This is expected,
as far away from the surface the wave action has no effect on the fluid.

2.6.2 Wave Driven Buoyant Effects

The most obvious effect of the waves on the buoy is to lift it up and down as the waves
pass. This effect is implemented in the model by adjusting the height of the buoy in the
opposite direction from the wave elevation. This adjusted height is only used in the buoyant
calculations. This adjustment is made by changing (2.53) to

rbody = rcm −Bn/bRcm −

264 0
0

ζ(x, y, t)

375 , (2.83)

where x and y are the horizontal coordinates of the cylinder’s CM1 in the navigation frame.
With this change, the buoyancy calculations for the housing and payload cylinders then
proceed as described in Section 2.3.

2.6.3 Wave Driven Drag Effects

The motion of the fluid near the water’s surface, as approximated by (2.82), will move
the buoy with it. If the buoy is very light and has a lot of drag, then its motion will be

1Strictly, the horizontal coordinates should be that of the center of buoyancy. However, since the center
of buoyancy is found as part of the buoyant calculation, this would result in an iterative solution. Because
the size of the cylinder is small compared to the waves, it is assumed that the wave elevation is constant in
the immediate vicinity of the cylinder. Furthermore, the error in horizontal position will be proportional to
the sine of deviation from the vertical. There will be no error when the buoy is vertical and the CM will
then have the same horizontal coordinates as the CB.
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dominated by the motion of the fluid. On the other hand, if the buoy has significant mass
and low drag, then it will be less affected by the motion of the fluid around it.

To implement the effects of fluid velocity on the buoy, the translational drag force is
calculated using the difference in velocity between the buoy and fluid. This difference is
calculated at the housing and payload cylinders’ center of buoyancy. Since the center of
buoyancy is the volumetric center of the submerged portion of cylinders, it is a reasonable
approximation of the center of pressure. In Section 2.5 the translational drag force equation,
(2.76), is adjusted to

Fdrag = −fsub

264CDfXY
LR 0 0

0 CDfXY
LR 0

0 0 CDfZ
R2

375 �Ṙcb −BT
i vfluid(rcb, t)

�
, (2.84)

where Bi is the attitude direction cosine matrix for the housing, i = 1, or the payload, i = 2.
The drag calculation then proceeds as described in Section 2.5. Because this calculation is
performed for both cylinders in the model, and the fluid velocity used is the fluid velocity
at the cylinders’ center of buoyancy, when the buoy is near the vertical, this captures the
twisting effects on the buoy due to the change in fluid velocity with depth.

2.7 Joint Kinematics

Up to this point, the dynamics and kinematic calculations have only required that the joint
prevent any translational motion between the two bodies. By specifying the kinematics
of the joint, we will define what sorts of rotations are permitted between the bodies, and
therefore how the joint quantities B, Ω, and Ω̇, are permitted to change. As an extreme
example, if the joint did not allow any rotation, then the joint DCM, B, would specify the
fixed attitude between the two bodies, and Ω and Ω̇ would both be 0.

Alternatively, the bodies could be connected by a single degree of freedom pivot (a
hinge), whose axis of rotation is aligned with one of the bodies’ coordinate system axes.
This is the configuration of the two body spacecraft presented in [23]. For this configuration,
the Ω and Ω̇ vectors will have, at most, one non-zero element, and the joint DCM, B, will
be one of the elementary rotation matrices (depending on which axis the hinge is aligned
with).

At the other extreme, the joint could permit the bodies to rotate with respect to each
other about all three axes. A spherical joint is one possible implementation for such a joint.
In this case, all the elements of Ω and Ω̇ might be non-zero. The joint DCM, B, would be
the product of all three elementary rotation matrices. The physical implementation of the
joint would determine the order of multiplication for the elementary rotation matrices to
properly calculate the joint DCM from the individual joint axis angles.

In the very early phases of this research, an “elevation over azimuth” joint configu-
ration was considered as the joint implementation between the two bodies. However, it
was rejected in favor of a universal (a.k.a. Hooke) joint. The benefits of the universal
joint over an elevation over azimuth joint are presented in Section 6.3. Both of these joint
implementations permit rotation between the bodies in two degrees of freedom.

2.7.1 The Universal Joint Angles: φx, φy, φz, and φv

The joint between the housing and payload section of the buoy is a universal or Hooke joint.
The joint’s x axis is attached to the housing and is aligned with the housing’s x axis. The

27



joint’s y axis and is attached to the payload and is aligned with the payload’s y axis. We
define the following joint angles (see Figure 2.4):

φv: The joint vertical angle is the angle between the housing’s and payload’s, z (long)
axes. When φv = 0 the housing and payload are co-linear.

φz: The joint azimuth angle is the angle between the payload’s z (long) axis projected into
the housing’s x-y plane, and the housing’s x axis. When φz = 0, the payload is in the
housing’s x-z plane. When φz = π/2 then the payload is in the housing’s y-z plane.

φx: The angle of the of joint’s x axis. When φx = 0, the payload’s z-axis is constrained to
the housing’s x-z plane.

φy: The angle of the of joint’s y axis. When φy = 0 ,the payload’s z-axis is constrained to
the housing’s y-z plane.

Either pair of angles, {φx,φy} or {φv,φz}, completely describes the position of the joint
and therefore the orientation of the payload with respect to the housing. Conversions from
one pair of angles to the other may be performed using

φx = arcsin

�
sinφz sinφvÈ

1− cos2 φz sin2 φv

�
, (2.85)

φy = − arcsin (cosφz sinφv) , (2.86)

and

φv = arccos (cosφx cosφy) , (2.87)

φz = atan2 (sinφx cosφy, − sinφy) , (2.88)

where atan2(y, x) is the four quadrant arctan function with the order of arguments as
specified.
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Figure 2.4: An illustration of the four universal joint angles associated with the joint. (a)
and (b) illustrate the joint axis angles φx and φy. (c) and (d) illustrate the joint’s azimuth
and vertical angles, φz and φv respectively. Axis 1, through the green yoke, is aligned with
the housing’s x axis. Axis 2, through the red yoke, is aligned with the payload’s y axis.
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2.7.2 The Joint Direction Cosine Matrix

Equation (2.24) requires the joint position to be specified as the direction cosine matrix, B.
This joint direction cosine matrix can be calculated from the joint angles φx and φy, using
the elementary rotation matrices

Bx =

2641 0 0
0 cosφx sinφx
0 − sinφx cosφx

375 , (2.89)

By =

264cosφy 0 − sinφy
0 1 0

sinφy 0 cosφy

375 . (2.90)

The overall joint DCM is calculated from the DCM for each joint axis by

B = BxBy. (2.91)

Since Euler angle rotations are not commutative, the order of the rotations is significant
in (2.91). It is important to understand that both axis angles are applied to the joint
simultaneously. Here “order” does not refer to temporal order, but rather the order in which
the rotations are encountered when progressing from the payload to the housing coordinate
systems. Recall that the joint DCM, B, transfers a vector in the payload coordinate system,
Q2, to a vector in the housing coordinate system, Q1, by

Q1 = BQ2 = BxByQ2. (2.92)

We can see in (2.92) that starting with the payload vector, Q2, it is left multiplied by the
DCM for rotation about the payload’s Y axis, By. This transforms the vector into the
intermediate coordinate system of the joint. This intermediate coordinate system is located
on the cross of the universal joint with its X and Y axes aligned with the arms of the
cross. Next the vector is left multiplied by the DCM for rotation about the X axis, Bx.
This transforms the vector into the housing’s coordinate system. This order comes about
because in our buoy the universal joint is configured such that the axis attached to the
payload is parallel to the payload’s Y axis, and the axis attached to the housing is parallel
to the housing’s X axis.

If the joint was attached to the payload and housing such that the axes were switched
(i.e. the payload joint axis was aligned the with payload’s X axis, and the housing joint
axis was aligned with the housing’s Y axis), then the overall joint DCM would be computed
from B = ByBx. Using this alternate joint configuration and “order of rotations”, would
require rederiving equations (2.85) through (2.88) to get the correct relationship between
φx, φy and φv, φz.

2.7.3 Maximum Joint Vertical Angle

Each joint axis, φx and φy, is limited to a maximum angular displacement before physical
hardstops or software limits the axis’ range of motion. For the prototype buoy configuration
this limit is ±45 degrees. This results in a maximum vertical angle, φvmax , which varies
as a function of joint azimuth angle. The maximum joint vertical angle varies between 45
degrees (when one joint axis is at 45 degrees and the other axis is at zero degrees) to 60
degrees (when both joint axes are at 45 degrees). Figure 2.5 plots the maximum vertical
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angle as a function of azimuth angle for a system where each axis is limited to ±45 degrees
and the joint is align such that the B = BxBy.

The maximum value for the joint vertical angle can be calculated by

φvmax = arccos
�
cos2 φaxismax

�
, (2.93)

where φaxismax is the maximum angular displacement for each joint axis.

An interesting point about these results, is that four joint azimuth angles where the
maximum vertical angle occurs are not equally spaced around the azimuth angles. In this
case the maximum vertical angle occurs at joint azimuth angles of approximately 35.5,
144.5, 215.5 (-144.5), and 324.5 (-35.5) degrees. This is shown in Figure 2.5. The results
are symmetric about the x axis (the 0 and 180 degrees joint azimuth plane) and the y axis
(the 90 and 270 degree joint azimuth plane). The maximum points are closer to the x axis.
This is another manifestation of the fact that Euler angle rotations are not commutative.
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Figure 2.5: The maximum joint vertical angle, φvmax , as a function of joint azimuth angle,
φz, for a universal joint whose axes are limited to ±45 degrees of motion.
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2.7.4 The Joint Angle Partial Derivatives

It is also useful to differentiate (2.85) and (2.86), with respect to φz and φv. Doing this
gives:

∂φx
∂φz

=

cosφz sinφv

(1−cos2 φz sin2 φv)
1/2 − cosφz sin3 φv sin2 φz

(1−cos2 φz sin2 φv)
3/2�

sin2 φz sin2 φv
cos2 φz sin2 φv−1

+ 1
�1/2 , (2.94)

∂φy
∂φz

=
− sinφz sinφvÈ

1− cos2 φz sin2 φv
(2.95)

and

∂φx
∂φv

=

cosφv sinφz

(1−cos2 φz sin2 φv)
1/2 + cosφv cos2 φz sin2 φv sinφz

(1−cos2 φz sin2 φv)
3/2�

sin2 φz sin2 φv
cos2 φz sin2 φv−1

+ 1
�1/2 , (2.96)

∂φy
∂φv

=
cosφz cosφvÈ

1− cos2 φz sin2 φv
. (2.97)

The partial derivatives calculated from (2.94) through (2.97) allow one to calculate how
much the joint axis angles, φx and φy, should be changed by to effect a specified change in
joint azimuth and vertical angles, φz and/or φv using

∆φx =
∂φx
∂φz

∆φz +
∂φx
∂φv

∆φv, (2.98)

∆φy =
∂φy
∂φz

∆φz +
∂φy
∂φv

∆φv. (2.99)

Note that (2.98) and (2.99) linearize the angular changes about the current operating point,
so they are approximations and will therefore become inaccurate for large changes.

2.8 Joint Axis Controller Model

Each joint axis is modeled as having an independent low level axis controller. The axis
controller allows the axis to be commanded in four possible modes: position-velocity, ve-
locity, acceleration, and jerk (the derivative of acceleration). In position-velocity mode the
axis controller drives the axis to a commanded position such that when the it reaches the
commanded position it will be traveling at the commanded velocity. In all these modes, the
joint controller enforces position, velocity, and acceleration (PVA) limits on the motion of
the axis.

The axis controller models are integrated at the base simulation rate. In all the imple-
mented and presented here, the joint axis controllers are commanded in position-velocity
mode, with the commanded velocity set to zero. This effectively makes the axis controller
a position only controller.

A detailed discussion of implementation of each of the axis controller modes is presented
in Appendix C.
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2.9 Estimating the Structure’s Resonant Peak

Numerical simulations of the buoy system excited by regular surface waves, presented in
Section 5.12, indicate that the buoy will become uncontrollable if there is significant wave
energy at the period with which it will naturally bob up and down in the water.

This resonant peak can be estimated by using a second order mass-spring-damper model
of the system

mz̈ + dż + kz = 0, (2.100)

where z is the vertical displacement of the floating object, m is the mass of the object, d is
the viscous drag, and k is the restoring force provided by buoyancy. z = 0 is height of the
object at static equilibrium, and is measured positive upwards.

The restoring (buoyant) force applied to an axially symmetric object floating in the water
(with the axis vertical) is proportional to the water line area and the vertical displacement
away from its equilibrium height. Therefore

Fres = Aρgz, (2.101)

where A is the waterline area, ρ is the density of the fluid, and g is the acceleration due to
gravity. Modeling our buoy as a vertical cylinder results in

Fres = πR2ρgz, (2.102)

where R is the radius of the cylinder.
Recall that when a second order system is in regular form, its natural frequency and

damping ratio are readily apparent from the characteristic equation

s2 + 2(ξωn)s+ ω2
n = 0, (2.103)

where ξ is the damping ratio and ωn is the natural frequency.
Given our second order mass-spring-damper model, we can combine (2.100), (2.102), and

(2.103) to calculate the natural frequency for the cylinder’s vertical motion in the water of

ωn =

Ê
πρg

R2

m
= 175.46

R√
m

= 87.73
D√
m
, (2.104)

or, equivalently, a natural period of

Tn = 0.0358

√
m

R
= 0.0716

√
m

D
. (2.105)

The natural frequency of the system is the frequency it would oscillate at if there were
no damping in the system. In the presence of damping the system oscillates at the damped
frequency of oscillation, ωd. The damped frequency of oscillation is related to the natural
frequency and damping ratio by

ωd =
È
ω2
n − (ξωn)2 = ωn

È
1− ξ2. (2.106)

This is equivalent to the imaginary part of the solution to the second order characteristic
equation for the system. ωd can also be estimated by measuring the period of oscillation of
z(t) in the presence of damping.
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The damping ratio can be estimated from the settling time, Ts of the system using the
relationships:

Ts =
4

ξωn
, ξωn =

4

Ts
, ξ =

4

Tsωn
. (2.107)

Here the settling time is defined as four system time constants, or the time at which the
system stays within 98% of its final value.

This allows the damped frequency of oscillation to be predicted based on the cylinder’s
radius, mass, and settling time from

ωd =

s�
175.46

R√
m

�2

− 16

T 2
s

. (2.108)

If there is not much damping in the system, then the settling time will be “long” and
the difference between the natural frequency and the damped frequency of oscillation will
be small. It can be shown that if

Ts >
9.2

ωn
, (2.109)

then the damped frequency of oscillation will be within 10% of the value for the natural
frequency. For all the buoy systems here, measured and simulated, this is the case. The
buoy’s resonant peak (in rad/s) can be accurately predicted by

ωd ≈ ωn = 175.46
R√
m

= 87.73
D√
m
. (2.110)

The magnitude of the viscous drag term, d, in (2.100) can be estimated from the settling
time of the system as

d =
8

Ts
. (2.111)

The magnitude of the damping ratio, ξ, can be estimated by

ξ =
4

TsR

r
m

πρg
. (2.112)

2.10 Model Summary

Recall that the dynamics of our system will evolve according to a nonlinear system with 8
DOF and the general form

ẍfull(t) = f (xfull(t), ẋfull(t), u(t), u̇(t), ü(t), t) , (2.113)

where we have assumed that the effects of derivatives higher than those in (2.113) are

negligible, we assume that ü(t) is piecewise continuous, xfull =
�
d0 φ2 φJ

�T
(xfull ∈ R8),

and u ∈ R2.

What follows is a summary of the equations used to execute the numerical model in
the simulation. In this summary the subscript i designates which body is being referred to,
where i = 1 is the housing and i = 2 is the payload. At each simulation step the following
sequence occurs:
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1. If it is time to update the control signal, then the commanded joint angles are cal-
culated based on the control algorithm selected and the current state information.
These commanded joint angles are then sent to the low level controllers for each joint
axis. This calculation may not occur at every simulation step because control loop
may run at a slower rate than the base simulation rate. This updated each joint axis’
position, velocity, and acceleration values. The joint PVA values determine the joint
terms, B, Ḃ, Ω, and Ω̇.

2. Calculate the forces and moments on the payload and housing bodies by:

(a) Calculate and update the buoyant forces and moments on each body by:

i. Calculate the inclined coordinate system DCM using the procedure in Sec-
tion 2.3.2.

ii. Calculate the submerged volume, Vsub, and the location of the center of
buoyancy, Rcb using the procedure in Section 2.3.3. To include sea state
effects calculate rbody using

rbodyi = rcmi −BiRcmi −

264 0
0

ζ(rcmi , t)

375 , (2.114)

where the subscript i is 1 for the housing and 2 for the payload, and the
wave elevation ζ is given by

ζ(x, y, t) =
NX
j=1

Aj sin[ωjt− kj (x cosβ + y sinβ) + φj ]. (2.115)

Here kj = ω2
j /g andN , Aj , ωj , φj are generated using a statistical description

of the sea state (see Appendix A). β is the direction of seas. If no waves are
present, set ζ = 0. Here the index j refers individual component waves used
to make up the wave model.

iii. Calculate the actual buoyant forces and moments on each body in their body
frame by:

Fbuoyanti = Bi

264 0
0

ρgVsubi

375 , (2.116)

Mbuoyanti = (Rcbi −Rcmi)× Fbuoyanti . (2.117)

(b) Calculate the gravity forces and moments on each body in their body frame by:

Fgravi = BT
i

264 0
0
−mig

375 , (2.118)

Mgravi = (Rcmsysi −Rcmi)× (−Fgravi) . (2.119)

(c) Calculate the drag forces and moments on each body in their body frame by
defining the matrix
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Kdragi =

264−fsubiCDfXY i
LiRi 0 0

0 −fsubiCDfXY i
LiRi 0

0 0 −CDfZi
R2
i

375 , (2.120)

and then calculating

Fdragi = Kdragi

�
Ṙcmi −BT

i vfluidi(rcmi , t)
�
, (2.121)

Mdragi = −fsubiLiRi

264sign(Ωxi)CDmXY
Ω2
xi

sign(Ωyi)CDmXY
Ω2
yi

sign(Ωzi)CDmZ
Ω2
zi

375 , (2.122)

Myawpassi =

264 0
0

−sign(Ωzi)nfinsi
1
8 CD ρwfini

Ω2
zi

�
(Ri + lfinsi)

4 −R4
i

�375 , (2.123)

MdragT i = (Rcbi −Rcmsysi)× Fdragi , (2.124)

where, if waves are present, the fluid velocity is given by

vfluid(x, y, z, t) =
NX
j=1

ωjAje
kjz

264sin [ωjt− kj(x cosβ + y sinβ) + φj ] cosβ
sin [ωjt− kj(x cosβ + y sinβ) + φj ] sinβ

cos [ωjt− kj(x cosβ + y sinβ) + φj ]

375 ,
(2.125)

otherwise vfluid = 0.

(d) Sum the forces and moments on each body and convert the forces to the naviga-
tion coordinate frame using

fexti = Bi (Fbuoyanti + Fgravi + Fdragi) , (2.126)

Texti = Mbuoyanti + Mgravi + Mdragi + Myawpassi + MdragTi . (2.127)

3. Calculate the payload’s rotational acceleration, Ω̇2, by:

(a) Calculate each body’s inertia about the system’s CM by:

R1 = Rcm1

�
1− m1

m1 +m2

�
− m2

m1 +m2
[RJ1 + B (Rcm2 −RJ2)] , (2.128)

R2 = Rcm2

�
1− m2

m1 +m2

�
− m1

m1 +m2

�
RJ2 + BT (Rcm1 −RJ1)

�
, (2.129)

J1 = Jh +m1

�
RT

1 R1I−R1R
T
1

�
, (2.130)

J2 = Jp +m2

�
RT

2 R2I−R2R
T
2

�
. (2.131)

(b) Find the time rate of change of the inertia terms by either: (a) finding the
difference between the current value and the value at the previous time step, or
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(b) by solving the system analytically for J̇i using:

Ṙ1 = −m2Ḃ (Rcm2 −RJ2)

m1 +m2
, (2.132)

Ṙ2 = −m1Ḃ
T (Rcm1 −RJ1)

m1 +m2
, (2.133)

J̇1 = m1

�
2RT

1 Ṙ1I− Ṙ1R
T
1 −R1Ṙ1

T
�
, (2.134)

J̇2 = m2

�
2RT

2 Ṙ2I− Ṙ2R
T
2 −R2Ṙ2

T
�
. (2.135)

(c) Solve for the payload’s rotational acceleration, Ω̇2, using�
J2 + BTJ1B

�
Ω̇2 =− Ω̂2J2Ω2 −BTJ1B

�
Ω̂Ω2 − Ω̇

�
−
�
Ω̂2 − Ω̂

�
BTJ1B (Ω2 −Ω)

− J̇2Ω2 −BT J̇1B (Ω2 −Ω) + BTText1 + Text2 ,

(2.136)

where Text1 and Text2 are the total moments applied to the housing and payload
bodies respectively. Text1 and Text2 are in the bodies’ coordinate systems.

4. Calculate the translational acceleration of the joint by

d̈0 =
−m1

�
Ḃ1Ω̂1 + B1

˙̂
Ω1

�
D1 −m2

�
Ḃ2Ω̂2 + B2

˙̂
Ω2

�
D2 + fext1 + fext2

m1 +m2
, (2.137)

where fext1 and fext1 are the total force applied to each body in the navigation co-
ordinate system. The values used for B1, Ḃ1, and Ω1 are from the previous time
step.

5. Integrate the system forward in time using:

(a) Integrate the low level joint controller models forward in time to get the new
position, velocity, and acceleration values for joint axis.

(b) Find the new joint location and velocity in the navigation frame by:

d0k+1
= d0k + ḋ0kdt+ 1

2 d̈0kdt
2, (2.138)

ḋ0k+1
= ḋ0k + d̈0kdt, (2.139)

where k is current time step and k + 1 is the next time step.

(c) Find the payload attitude and rotational velocity using

B2k+1
= B2k + Ḃ2kdt, (2.140)

Ω2k+1
= Ω2 + Ω̇2kdt. (2.141)

(d) Normalize the payload attitude DCM using the Gram-Schmidt algorithm. With-
out periodic renormalization, the payload DCM would accumulate round off er-
rors and become an invalid DCM. This renormalization does not need to occur
at every simulation step.
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(e) Update the housing’s rotational and translational position, velocity, and accel-
eration values using:

B1 = B2B
T , (2.142)

Ω1 = B (Ω2 −Ω) , (2.143)

Ω̇1 = B
�
Ω̂Ω2 + Ω̇2 − Ω̇

�
, (2.144)

rcm1 = d0 −B1DJ1, (2.145)

ṙcm1 = ḋ0 −B1Ω̂1DJ1, (2.146)

r̈cm1 = d̈0 −B1
˙̂
Ω1DJ1. (2.147)

(f) Update the payload’s translational position, velocity, and acceleration by:

rcm2 = d0 −B2DJ2, (2.148)

ṙcm2 = ḋ0 −B2Ω̂2DJ2, (2.149)

r̈cm2 = d̈0 −B2
˙̂
Ω2DJ2. (2.150)

This completes one iteration of the simulation loop. For clarity, the integration method
presented above is an implementation of Euler’s method. In the actual numerical simulation,
the integration is performed using an Improved Euler’s method. The Improved Euler’s
method is implemented by:

I At the completion of step 4, the system state values are copied to temporary variables.

II The integration described in step 5 is performed on the temporary variables.

III Steps 2 through 4 are run on the temporary variables to calculate the derivatives Ω̇2

and d̈0 at the end of the time step.

IV The improved values for Ω̇2 and d̈0 are calculating by averaging their values in the
temporary and non-temporary variables.

V The integration step, step 5, is then run on the non-temporary variables using the
averaged derivative values computed in step IV.
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Chapter 3

Model Verification

The model developed in Chapter 2 allows an investigation of the dynamics and control of
the coupled two body buoy in the presence of gravity, buoyancy, and drag. The inertial
effects of the two bodies on each other are solved analytically in the dynamics model. The
gravity, buoyancy, and drag effects are specified by external forces and moments applied to
the model.

The gravity and buoyancy effects can be calculated directly from the geometry of the
system. The drag calculations are more complicated, and a reasonable drag model is re-
quired for the numerical simulation of the coupled system. But what is a “reasonable” drag
model?

The two experiments presented in this chapter were designed to inform the choice of
drag model and subsequently validate the drag model. Two cylinders were built, a small
non-instrumented cylinder and large instrumented cylinder. These cylinders were placed
in water and released from various initial conditions and their responses recorded. Then
their geometry and mass distributions were modeled in the simulation, and the simulation
parameters were adjusted until the simulated results approximated the experimental results.

These results were applied to the numerical simulation in two manners:

1. The simulation framework was used to model a single cylinder which closely matched
the experimental cases. The global simulation parameters were adjusted to bring the
numerical simulation into agreement with the experimental results.

2. When simulating the jointed two body buoy, the buoy was configured to run with the
joint locked in the vertical position. Thus, the two body buoy system was mimicking
a single cylindrical buoy.

3.1 Small Test Cylinder Experiment

Because the small test cylinder has no instrumentation mounted on it, for this experiment
the quantitative measurements were made by analyzing video recordings of the trials. The
principal quantitative comparisons are:

1. Settling time

2. Period of oscillations
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3. Approximate magnitude of first several rotational and translational oscillations after
release.

Because of the crudeness of these measurements, much of the comparisons in this ex-
periment are qualitative in nature. The following qualitative parameters were of interest:

1. The coupling between roll and pitch motions.

2. The coupling between the roll/pitch and yaw motions.

3. The coupling between the vertical translation and angular rotations.

3.1.1 Experimental Setup

A small cylinder was constructed out of a 24 inch long piece of 3 inch schedule 40 PVC
pipe, with an actual outer diameter of 3.5 inches. An end cap was placed on the bottom
and a threaded cap was placed on the top. The body of the pipe was painted in alternating
red and white stripes 1 inch wide to help with position and attitude determination. The
cylinder was then ballasted with two sealed plastic bags of lead shot, a 1.8 lbs bag and
a 1.0 lbs bag. Figure 3.1 shows the approximate ballast position in the cylinder and a
photograph.

Lead 
Ballast

Water 
Ballast

1" Stripes

27
"

3.5"

Figure 3.1: The diagram of the approximate ballast position in the cylinder and photo of
the cylinder during testing. The 1 inch markings aid in determining the position response
of the cylinder from the recorded video.
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The buoy was released from various initial positions and attitudes and the response
recorded by video for later review and measurement.

3.1.2 Measurement and Simulation Comparison

A video clip showing video footage from three experimental trials and the corresponding
animation of the numerical simulation results is available at “http://www.youtube.com/
watch?v=ls0JFz7MHDo”. The three trials presented in the video show a vertical drop test, a
moderate (45 degree) inclined release test, and an extreme (85 degree) inclined release test.
For each of these trials a numerical simulation was run of the cylinder with the same initial
conditions. The animation and the video footage were then synced together and merged
into a single video where they play side by side using the SIMDIS visualization software.

Viewing the three trials side by side with their corresponding simulation animations it
is clear that the simulation does behave in a similar manner to the actual cylinder. Figure
3.2 shows four frames from this video.

Figure 3.2: This shows four frames from the video of the combined video footage and the
animated results from the numerical simulation. The cylinder was released from approxi-
mately a 45 degree angle. The animated simulation results seem qualitatively reasonable
when compared to the actual response in that the settling times, period of oscillation,
amount of coupling between axes, and magnitude of oscillations are all similar.
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3.1.2.1 Quadratic vs. Linear Drag Comparison

In most of the trials, significant angular displacements had dissipated by 20 to 30 seconds
after cylinder release. This provides a good quantitative metric of the cylinder’s settling
time.

A quadratic drag relationship for the moment resisting rolling and pitching motions is

Md⊥z = −sign(Ω)18ρCDXY
Ω2D(z41 + z42). (3.1)

Here Ω is the rotational rate about the CM along the X or Y directions. CDXY is the
coefficient of drag for flow perpendicular to the cylinder. ρ is the density of the fluid. D is
the diameter of the cylinder. And z1 and z2 are the distances between the center of mass
and the waterline and center of mass and the bottom of the buoy, respectively.

An alternative drag model is based on a linear relationship with the rotational velocity.
Making a slight modification to (3.1) gives

Md⊥z = −1
8ρCDXY

ΩD(z41 + z42). (3.2)

In (3.2), CDXY
is no longer dimensionless to maintain dimensional consistency.

With this linear relationship the angular oscillations decay completely to zero as ex-
pected.

Figure 3.3 shows a comparison of the simulated buoy response when released from an
initial inclined angle of 45 degrees using linear drag model (red) against the quadratic drag
model (blue).

In reviewing the video of the 20 trials performed, it is clear that 1) the oscillations decay
to a fraction of the initial displacement within 3 or 4 periods and 2) that oscillations do seem
to come close to zero magnitude. However, measuring the magnitude of the small angular
displacements is difficult and the oscillations predicted by the quadratic drag model are ±2
degrees. Oscillations of this magnitude are likely to be too small to see in the video. Thus,
qualitatively, the quadratic model seems to approximate the the initial transient response
better.

3.1.2.2 Asymmetric Center of Mass Comparison

The illustration of the ballast locations in Figure 3.1 are notional. The volume displayed in
the illustration is correct, but the bags of ballast were not positioned as shown. When the
test buoy was first put in the water, with just the lead ballast, at equilibrium it would list
to one side indicating that the center of mass was not located on the central longitudinal
axis (Z) of the buoy. This listing was reduced as much as possible by resettling the ballast
and adding a couple pounds of water to the buoy as additional ballast.

In all cases when the buoy was released with any inclined angle, some amount of az-
imuthal rotation would become evident. This occurred even when great care was taken to
not impart any azimuthal rotation on release. The CAD model of the test buoy (used in
Figure 3.1) was used to determine a nominal center of mass location and inertia tensor for
the test buoy. The CAD software gives a center of mass, in meters, of

RCMCAD
=

264−0.0023
0

0.2042

375 . (3.3)
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Figure 3.3: This plot compares the cylinder’s simulated response between the quadratic
drag model (blue) against the linear drag model (red). The linear model does bring the
angular oscillations to zero. The CDXY

values used were to give both responses similar
settling times of about 30 seconds. The quadratic model does not go all the way to zero
within a minute because at very low rotational velocities the velocity squared term is even
smaller and the drag becomes negligible. In this plot, the oscillation of the quadratic model
at 60 seconds is approximately ±1 degree. This would appear as stationary to the naked
eye.

So the center of mass is nominally less than 3 mm off the long axis of the buoy. The
corresponding inertia tensor, in kgm2, is

JCAD =

2640.14444 0 0.00083
0 0.14477 0

0.00083 0 0.00366

375 . (3.4)

When these parameters are entered into the simulation, and the initial incline angle is
NOT in the plane of the center of mass and the Z axis, rotational coupling between the axes
is observed. The results of one of these simulations are shown in Figure 3.4. Additionally,
the steady state list in pitch is noticeable, due the off axis center of mass. The initial
azimuthal rotation rate in the model is significantly higher than was observed in the trials.
In the trials, azimuthal rotational periods were more typically between 6 and 12 seconds.

It is noteworthy that these results show that shifting the cylinder’s CM by only 2.5%
(of the cylinder’s diameter) off the long axis is enough to cause significant coupling between
the axes.
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If the initial angular displacement of the cylinder is in the plane of the CM off-axis direc-
tion, then no rotational coupling is observed. So the difference between modeled azimuthal
rotation rate and observed rotation rate could be due to:

1. The actual initial angular displacement is closer to the plane of the CM off-axis di-
rection than in the simulation.

2. The actual CM is less off axis than the modeled CM.

3. The quadratic drag model needing additional tuning.

There was insufficient data in this experiment to determine which of the above causes
was the dominant cause of the azimuthal rotation mismatch.
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Figure 3.4: The simulation’s response to being released from an initial angular displacement
out of plane with the asymmetric center of mass. The center of mass was off axis by less
than 3 mm. When the cylinder was released, the asymmetry caused the roll motion (blue)
to be coupled into the pitch (green) and azimuthal (red) motion.

3.1.3 Small Cylinder Experiment Conclusions

The small test cylinder experiment suggested the following results:

1. The quadratic drag model was more appropriate than the linear drag model.

2. The peak of the second oscillation was significantly smaller than the initial release
angle.
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3. A slightly off-axis CM will produce noticeable coupling from roll and pitch motion
into yaw motion and between the roll and pitch axes.

4. Significant cylinder motion decays away within 30 to 60 seconds of release.

However, any quantitative results derived from the small cylinder test were calculated
by reviewing the video footage frame by frame and making crude measurements of the
angles and heights visible in the frame. This procedure was extremely time consuming
and tedious. The quantitative results are useful as approximate bounds on the cylinder’s
response. However, given all the quantitative uncertainties in this experiment, this led
to a desire for an instrumented cylinder that could generate better and higher resolution
quantitative results with some form of automated on-board instrumentation.

3.2 Large Test Cylinder Experiment

3.2.1 Instrumented Cylinder Description

The goal of this series of tests was to validate the numerical model of a cylinder floating
in the water. An instrumented cylinder 6.375 inches in diameter and 36 inches long was
tested at the United States Naval Academy’s hydrodynamics laboratory.

An instrumented cylindrical buoy was constructed to hold a CrossBow NAV440 Inertial
Measurement System (INS), and a Microhard Nano 920 spread spectrum radio. Figure 3.5
shows assembly drawing for the buoy. A pair of 7.2 volt 1800 mAh batteries in series supply
electrical power for the INS and radio. The data from the INS is transmitted by the radio
to a matching radio where it is displayed and logged by a laptop.

The CrossBow NAV440 INS is a GPS and magnetometer aided inertial measurement
system. Since the testing was completed indoors, GPS aiding was disabled. Since there
were significant ferrous materials near the tanks, the magnetometer measurements may not
be accurate in an absolute sense. This resulted in significant low frequency errors in the
measured roll and pitch data. These errors were later removed by a digital high pass filter.
Also, yaw angle measurements were not used, rather the yaw rate data was used to evaluate
yaw effects and performance. Additionally, without GPS, the principal measurements by the
IMU for this analysis are: roll and pitch angles, yaw rate, and vertical (z axis) translational
acceleration.

3.2.2 Trial Descriptions

We performed 26 individuals tests, designated A through Z. Five kinds of tests were per-
formed:

Inclined Release (IR): In this test the cylinder is placed approximately horizontal on
the water’s surface and then released. This type of test allows for characterization of
the buoyant and drag moments about the cylinder’s X and Y axes, and the coupling
between all three axis. It also provided a good measure of the cylinder’s settling time.

Yaw Rotation (YR): In this test the cylinder starts floating vertically at equilibrium.
A spin about the long axis (Z) is imparted to the cylinder. This test allows for
characterization of the rotational drag about the cylinder’s long axis, and coupling
between the rotation about the Z axis into the roll and pitch axes.
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Table 3.1: A summery of the large instrumented test cylinder trials.
Trial Test Type Comments

A IR
B IR About the Y axis, raw IMU measurements have low

frequency errors.

C IR About the X axis.
D VT Roll and pitch measurements have bias errors.

E YR
F IR Possibly imparted spin about the Z axis on release.

G IR About the X axis.
H YR

I YR
J IR About the Y axis.

K IR About the Y axis.
L VT No Video Recorded. Roll and pitch measurements

both have errors.

M VT Buoy hit wall at 1 min.
N IR Roll and pitch values reasonable at end.

O SW 2 inch wave at 2 sec. period. Evidence of resonance.
P SW 4 inch wave at 3 sec. period.

Q SW 2 inch wave at 5 sec. period.
R LW 12 inch wave at 5 sec. period.

S LW 33 inch wave at 2.5 sec. period. Wave tank pump
shutdown fault.

T LW 33 inch wave at 2 sec. period. Evidence of resonance.

U LW 24 inch wave at 2 sec. period. Evidence of resonance.
V LW 6 inch wave at 8.25 sec. period. Almost no motion.

W LW 6 inch wave at 6 sec period.
X LW 6 inch wave at 4 sec period.

Y LW 6 inch wave at 2 sec period. Evidence of resonance.
Z LW 6 inch wave at 1 sec period.

Vertical Translation (VT): In this test the cylinder starts vertically in the water sub-
merged such that its top surface is at the water’s surface and then released. This
test allows the characterization of the vertical translational drag and the cylinder’s
characteristic frequency.

Small Wave Tank (SW): In this test the cylinder starts at equilibrium and is excited by
waves generated in the small wave tank.

Large Wave Tank (LW): In this test the cylinder starts at equilibrium and is excited by
waves generated in the large wave tank.
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Figure 3.5: The assembly drawing of the large instrumented cylinder.
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3.2.3 Angular Data Filtering

Due to the lack of GPS input and the significant amount of ferrous metal in and around the
tank where the testing occurred, there were significant low frequency errors in the measured
roll and pitch angles. These error were removed by applying a 200 point high pass digital
filter to the measured roll and pitch angles [24].

The number of elements in the filter z is n = 200. The value of each filter element is
given by

z[i] =

¨
−1/n if i 6= n/2,

1 if i = n/2.
(3.5)

The filtered output, y, is found by the convolution of the input signal, x, with the filter, z,
using the MATLAB convolution command,

y = x ∗ z. (3.6)

Figure 3.6 shows the raw measured roll and pitch angles (blue) for Trial B. The slow
large amplitude oscillation indicated by the measured data did not occur. This is clear from
the video footage of the trial. The filtered data (green) has been centred about zero by the
digital high pass filter.
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Figure 3.6: Roll and Pitch Values from the Large Test Cylinder Experiment, Trial B. Trial
B was an inclined release trial where the cylinder was released from 78 degrees away from
the vertical (15 degrees in roll and -80 degrees in pitch). The filtered data was generated by
running the data through a 200 point high pass digital filter to remove the low frequency
error in the data.
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3.2.4 Incline Release Results

The inclined release trials were trials B, F, J, and N. Video footage for the first 60 seconds
of each of these trials is viewable at “http://www.youtube.com/watch?v=0PQfiAA-rsU”.
Figure 3.7 shows four frames 1 second apart from the trial B video.

+0.0 Seconds +1.0 Seconds+1.0 Seconds

+2.0 Seconds +3.0 Seconds

Figure 3.7: Four frames, one second apart, for Trial B, an inclined release trial.

Plots of the roll and pitch from the inclined release trials are plotted next in Figures F.1
through F.4, showing approximately 55 second after release of the filtered and unfiltered
data. Next Figures 3.8 and 3.9 show the filtered data for Trials B, F, J, and N. plotted
together.

Looking at these plots a couple things stand out.

1. The magnitude of the peak of the oscillation after the buoy has been release is con-
sistently less than one half the initial angle.

2. It takes 1.5 to 2 seconds for the cylinder to complete its first oscillation after release.

3. With the exception of Trial J, the oscillations settle to proximately ±10 degrees within
10 to 15 seconds after buoy release.
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Figure 3.8: The filtered roll and pitch values from the large test cylinder experiment, trials
B, F, J, and N. The oscillations in Trial J are noticeably worse than the other trials.
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Figure 3.9: The first 15 seconds of filtered roll and pitch values from the large test cylinder
experiment, trials B, F, J, and N.
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3.2.5 Yaw Rotation

The Figure 3.10 shows the yaw rate vs. time for the three yaw rotation trials (Trials E,
H, and I). For these trials the cylinder started at vertical equilibrium and then a spin was
imparted about its long axis. The data from the three trials appears to be consistent. The
following items are noteworthy about these results:

1. Over half of the rotational velocity seems to be dissipated in the first 5 seconds, then
the rate of deceleration slows significantly, indicating a quadratic drag relationship
might be appropriate.

2. The shape of the bounding envelope from approximately 5 seconds onward indicates
that a linear or quadratic drag relationship may be an appropriate model.

3. The “wobble” in the yaw rate is due to the cylinder’s center of mass being slightly off
the long axis.

4. The IMU’s rate gyros saturate at just under 250 degrees per second.
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Figure 3.10: The yaw rate data for the yaw rotation trials E, H, and I. The shape of the
bounding envelope from approximately 5 seconds onward indicates that a linear or quadratic
drag relationship may be appropriate. The “wobble” in the yaw rate is due to the cylinder’s
center of mass being slightly off the long axis.
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3.2.6 Vertical Translation Results

The vertical translation trials were to characterize the translational drag effects on the
cylinder. Since the IMU was running without GPS, measuring vertical position directly
would be problematic due to acceleration and velocity errors integrating into ever increasing
position errors. Figure 3.11 plots the cylinder’s vertical acceleration for the three vertical
translation trials. The envelope of the oscillations approximates a linear drag relationship.
Figure 3.12 shows just the first 20 seconds of data for these trials. For all these trials it
is clear that cylinder is oscillating with approximately a 2 second period. This natural
frequency of 0.5 Hz will result in significant resonances during the wave tank trials when
the buoy is excited by waves with a 2 second period.
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Figure 3.11: The vertical acceleration data for trials D, L, and M. The bounding envelope
of the oscillations approximate a linear drag relationship.

3.2.7 Small Wave Tank Results

A video of the small wave tank trials is available at “http://www.youtube.com/watch?
v=gPIW0TBvswU”. Of the 3 trials performed in the small wave tank, Trial O had a wave
period of 2 seconds, which is very close to the natural frequency of cylinder, resulting in
a significantly larger response amplitude compared with other trials. Even though Trial P
had a wave height twice that of Trial O, it produced less vertical acceleration. Figure 3.13
shows the filtered roll and pitch angles for small wave tank trials O, P, and Q. Figure 3.14
shows the acceleration along the cylinder’s long axis (Z) for the small wave tank trials O,
P, and Q.
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Figure 3.12: The first 20 seconds of vertical acceleration data for trials D, L, and M. The
natural frequency of 0.5 Hz is evident.
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Figure 3.13: The filtered roll and pitch data for the small wave tank trials O, P, and Q.

3.2.8 Large Wave Tank Results

While testing the large instrumented cylinder at the Naval Academy’s Hydrodynamics Lab-
oratory, the opportunity presented itself to test the cylinder in the laboratory’s “large” wave
tank. The large wave tank is 380 feet long and can generate waves almost 3 feet high. Some
of these trials were conducted in the spirit of applying the most extreme conditions which
could be generated to just to see what happens.

A video of the large wave tank trials is available at “http://www.youtube.com/watch?
v=YJhcfNE6vaU”. A couple of video frames of these trials shown in Figure 3.15. In reviewing
the video of these trails two major characteristics become apparent. 1) Wave periods of 2
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Figure 3.14: The long axis (z) acceleration data for the small wave tank trials O, P, and Q.
The resonance effects due to the 2 second period of Trial O are clearly evident.

seconds are very effective at exciting the large instrumented cylinder. 2) If the waves and
buoy are of a similar magnitude in size, the buoy will be subject to extreme angular and
horizontal displacements. The oscillatory horizontal displacements of the buoy are clear in
the video as well.

These results lead to the following design and operating requirements:

1. The buoy must be significantly smaller than the wave heights in the operating area.

2. The buoy’s resonant frequency should be above that of significant wave energy in the
operating area.

3. The buoy will not be effective in breaking surf.

All of these requirements mean that such a buoy system will be more effective in open
deep water where the wave heights are larger, the wave periods longer, and breaking surf
less likely.

The modeling and simulation of wave inputs are discussed in Appendix A.

3.3 Resonant Peak Comparison

The large and small cylinder experiments were also used to validate the modeling of the
buoy’s resonant peak for vertical oscillation. A comparison of the estimated and actual
damped frequency of oscillation is listed in Table 3.2. The resonant frequency of oscillation
was estimated using (2.110). For both the large and small cylinders the settling time was
significantly greater than 9.2/ωn. Therefore, drag effects can be neglected for the purpose
of estimating the resonant frequency of oscillation. This is shown in Table 3.2 where there
is no significant difference between the estimate natural frequency, ωnest , and the estimated
damped frequency of oscillation, ωdest , calculated using (2.108). The predicted period of
oscillation closely matches the measured period for the large test cylinder. The match is
not as close for the small cylinder trial. This could be due to the difficulty in accurately
measuring the period from the video footage of the small cylinder.
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Figure 3.15: Two frames for Trial T, testing the large instrumented cylinder in the large
wave tank.

Table 3.2: A comparison of the estimated and observed vertical oscillations frequencies for
the small and large test cylinders. The predicted period of oscillation closely matches the
measured period for the large test cylinder. The match is not as closed for the small cylinder
trial. This could be due to the difficulty in accurately measuring the period from the video
footage of the small cylinder.

Parameter Units Small Cylinder Large Cylinder

R (m) 0.044 0.081
m (kg) 3.3 18.0

Tsmeas (s) 41 90

ωnest (rad/s) 4.2 3.3
ωdest (rad/s) 4.2 3.3

Tdest (s) 1.5 1.88
Tdmeas (s) 1.7 1.86

The long settling times mean that there is virtually no difference between the natural
frequency, ωn, and the damped frequency of oscillation, ωd for the buoy systems. The means
that the buoy’s resonant frequency of vertical oscillation can be predicted from its radius
and mass alone.
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3.4 Model Validation Summary

These experiments shaped the numerical model in the following ways:

1. The translational drag force are modeled as being linearly dependent on translational
velocity based on the findings in Section 3.2.6.

2. The rotational drag moments are modeled as being quadraticly dependent on the
rotational velocity based on the roll and pitch testing with both cylinders, Sections
3.1.2.1 and 3.2.4.

3. Placing the CM of the a cylinder only slightly off of the longitudinal axis is sufficient
to generate coupling between the roll/pitch motions into yaw motions.

4. Settling times for the buoy system that are approximately 1 minute or less are rea-
sonable.

5. The results of the small wave tank trials prompted the study of the resonant peak
response modeled in Section 2.9 and validated in Section 3.3.

6. The results of the large wave tank trials (the trails with non-breaking waves), prompted
the examination of the effects of wave induced fluid velocity on the buoy system. The
wave model we use is presented in Sections A.1.2 and A.2.3 and simulation results are
presented in Sections 5.12 and 5.13.

7. The buoy’s resonant peak for the frequency of vertical oscillation can be well predicted
by its natural frequency, which can be calculated from the buoy’s radius and mass.
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Chapter 4

Buoy Control Laws

For this problem there are two phenomena which drive the design of a suitable controller
for the system.

The first phenomenon is the complexity of the air-water interface at the ocean surface.
The effects of surface waves produce significant disturbances across a very broad spectrum
of frequencies in all buoy states (translational and rotational). These disturbances are
stochastic in nature and extremely difficult to anticipate in the short time scales of the
buoy’s motion.

The second phenomenon is the rotational coupling between all three rotational axes of
the buoy. This is driven by the asymmetric structure of the buoy when the joint is at a
non-zero vertical angle, and the buoy’s changing relationship with the water’s surface. This
structural asymmetry results in torques about all three axes due to gravity, buoyancy, and
inertial coupling.

The first phenomenon requires a controller with extremely good disturbance rejection.
The second phenomenon requires that the controller either have an accurate model of the
coupling effects between all the rotational axes to perform coordinated control of both axes,
or that it treat the coupling from the other axis as a disturbance to be rejected, and controls
each axis without accounting for the actions of the other axis.

To accurately predict the rotational coupling in the system, the controller would need
to sense or estimate the full attitude of the payload, the position, velocity, and acceleration
of both joint axes, and the submerged fraction of the housing and payload. With these
sensed (or estimated) quantities, the model developed in Chapter 2 could (conceivably) be
used to predict the coupling and a therefore allow a coupled control law to be developed.
This approach places a significant sensing and computational burden on the controller (or
imposes a significant challenge in designing an estimator).

An alternate approach, and the one advocated here, is that since the surface wave
effects already require a controller with good disturbance rejection properties, the coupling
from the other axis’s motion should be treated as a disturbance to be rejected. Given
this approach, it will be shown that the only states the controller needs to measure are
the payload attitude in the navigation frame and its rotational rates about its body axes.
This approach results in very simple control laws. Effectively, we are designing a maximum
ignorance controller. Additionally, when a state is needed for the purpose of control, we
assume it is available to the controller.

For the purpose of designing the controller, the 8 DOF plant (see Section 2.2) is reduced
to a 4 DOF plant. In this reduced order plant, the 4 DOFs are the payload roll and pitch
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angles in the navigation frame and the two joint axis angles. These 4 DOFs are controlled
by the active controller. The remaining 4 DOFs for the full plant (three translational DOFs
and the payload yaw angle) are governed by the passive characteristics of the plant.

Furthermore, if we can design a controller which is robust with respect to disturbances,
we can treat the coupling between the payload roll and pitch motion as disturbances. This
allows us to further decompose the plant model from a coupled 4 DOF system to a pair of
identical and uncoupled 2 DOF systems. In the 2 DOF plant model, the degrees of freedom
are the payload angle and the joint axis angle.

Using uncoupled 2 DOF controllers, the only parameters which each controller needs
to sense are the payload angle (in roll or pitch in the navigation frame) and the payload
angular rate (about the roll and pitch body axes).

Most of the simulated trials were conducted using a sliding mode control law with a
feed forward term (SMC+FF). This SMC+FF law was bench-marked against a traditional
proportional, integral and derivative control law with a feed forward term (PID+FF). Both
control law implementations are fundamentally single axis controllers. They drive each joint
axis independently, and treat coupling from the other axis as a disturbance to be rejected.
Both laws use the same overall structure of:

1. A common “mixing” algorithm converts the commanded payload azimuth and vertical
angles to reference payload roll and pitch angles. All these angles are in the navigation
frame.

2. The SMC+FF or PID+FF law drives the individual joint axes to achieve the reference
payload roll and pitch angles.

3. An optional active yaw damping feature can be engaged to help stabilized the buoy
in yaw.

Both control laws were effective at stabilizing the buoy payload in simulation.

Section 4.1 provides a short introduction to sliding mode control theory and includes
the derivation of the stabilizing control, a some techniques for minimizing chattering, and
examples of analyzing SMC systems for robustness with respect to parameter uncertainty
and external disturbances. Section 4.2 of this chapter describes SMC+FF law used for most
of this research. It includes the implementations for the mixing algorithm and active yaw
damper. Section 4.3 describes the PID+FF control law. Both the SMC+FF and PID+FF
laws have an integral gain term. In practice, for the these simulations, this term was set to
zero. Section 4.4 presents the rationale by which this term was included in the first place
and some of the issues surrounding its use. Section 4.5 discusses the feed forward (FF) gain
term which is also common to both the SMC+FF and PID+FF laws and is critical for good
system performance. Finally, the mathematics of the “composite payload pointing error” is
presented in Section 4.6. This allows for the calculation of the angular difference between
the commanded aim point and actual payload aim point. This is the primary metric of how
well the payload is pointing at the target.

A summary of the angular parameters used in these control laws is presented in Table
4.1.
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4.1 Sliding Mode Theory

4.1.1 Finding the Stabilizing Control

Sliding Mode Control (SMC) is a useful form of non-linear control. Its principal advantages
are:

1. It does not require a linearized model assumption of a fundamentally non-linear plant.

2. It is particularly well suited to plants and actuators that are discrete in nature.

3. It can be extremely robust to parameter variations in the plant.

4. It can be extremely robust with respect to external disturbances.

Its main disadvantage is the potential for actuator “chatter” in many applications.
The following introduction to SMC is a condensed form of the introduction presented

in [14, Section 14.1]. Additionally, Young and Utkin in [13] and Utkin in [29] provide an in
depth coverage of sliding mode control and its more advanced implementations.

Consider the second order system

ẋ1 = x2,

ẋ2 = h(x) + g(x)u, (4.1)

where h(x) and g(x) are unknown, non-linear, scalar-valued functions of the state variable
x = (x1, x2) ∈ R2. If the input weighting function g(x) is always positive, i.e. g(x) ≥ g0 > 0,
we can design a state feedback law to stabilize the system about the origin using sliding
mode control.

The control law will stabilize the system on the surface (or manifold)

s(x) = Cx1 + x2 = 0, (4.2)

where C ∈ R is prescribed. When the system is “on” this surface, its trajectory is governed
by the dynamics of ẋ1 = −Cx1. These dynamics will drive the system to zero, with a rate
that is dependent on the magnitude of C as long as C > 0. Once the system is on the
sliding surface s = 0, it’s motion is independent of the non-linear functions h(x)
and g(x). The system trajectory consists of two phases, a reaching phase where the system
travels from a point in state space not on the sliding surface, to the sliding surface; and the
sliding phase where the system is maintained on the sliding surface. A phase portrait of
this behavior is shown in Figure 4.1.

If, in some region of interest, h(x) and g(x) satisfy the inequality����Cx2 + h(x)

g(x)

���� ≤ k1, (4.3)

where k1 is a known, non-negative constant, then the sliding mode control can be written
as

u = −k(x) sign(s), for k(x) > k1, (4.4)

where sign(s) is

sign(s) =

8<: 1, s > 0,
0, s = 0,
−1, s < 0.

(4.5)
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x1

x2Sliding Surface
S=0

Figure 4.1: A phase portrait of a system under sliding mode control, reaching the sliding
surface and being maintained on it. The slope of the sliding surface is determined by the
magnitude of C in our example.

We can informally explain this behavior by showing that, given the above assumptions,
the product s(x)ṡ(x) < 0 for all non-zero values of s, and therefore the system will converge
to the manifold s = 0. To show this, we substitute (4.1) and (4.4) into the expression for ṡ
and rearrange the terms to get the LHS of (4.3). Performing these steps give

ṡ(x) = Cẋ1 + ẋ2,

= Cx2 + h(x) + g(x)u,

= Cx2 + h(x) + g(x) [−ksign(s)] ,

= g(x)

�
Cx2 + h(x)

g(x)
− ksign(s)

�
. (4.6)

Our assumptions of g(x) > 0 and |(Cx2 + h(x))/g(x)| ≤ k1 < k, where C, k1, and k are all
non-negative constants, are enough to show that (4.6) will always have a sign opposite s
for non-zero values of s.

The power of sliding mode control technique is from what is implied by (4.3).
Only the maximum magnitude of the non-linear effects (parameter variations
and external disturbances) need to be known to implement a robust SMC con-
trol law. More formal proofs of the stability and convergence for sliding mode control are
given by Khalil in [14] and Utkin in [29].

4.1.2 Minimizing Chattering

SMC systems can be susceptible to chattering as the sign function in the control law switches
back and forth to keep the system on the sliding surface. Chattering can occur due to
numerous reasons, including: system latencies (sensors and actuators), discrete control loops
driving a continuous plant, and unmodelled dynamics in the system. Figure 4.2 shows a
notional system state trajectory oscillating back and forth about the switching surface.

Numerous technique are discussed in the SMC literature to minimize or eliminate chat-
tering. [29, Chapter 8] and [13] are particularly noteworthy. A common method suggested
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Figure 4.2: Chattering due to control delay in an SMC system.

in the literature, is the boundary layer solution. This involves replacing the sign function
with a saturation function of the form,

sat(s, ε) =

8<: 1, s > ε,
s/ε, −ε ≤ s ≤ ε,
−1, s < −ε,

(4.7)

where ε defines the region beyond which the value is set to ±1. This replaces the discrete
switching surface of the ideal SMC controller with a linearized region within a boundary
layer of thickness ε of the sliding surface. This technique, while simple to implement, may
not always produce the desired results. So considerable research has been done on other
techniques to reduce chattering.

4.1.3 Invariant Systems via Regular Form

4.1.3.1 The General Case

As mentioned above a principal strength of sliding mode control is that it can be made
extremely robust to plant parameter variations and external disturbances, thus making the
system invariant to these effects. The conditions that must be met for a system to be
invariant are derived by Utkin in [29, Section 3.3]. In summary the variations (external
disturbances and parameter variations) should be in states that are directly affected by
the control vector, u. If this is true, the system can be written in regular form where the
state space is partitioned in a subspace that is directly affected by the control vector and a
subspace that is not.

As an example consider the affine system

ẋ = f(x, t) + B(x, t)u + h(x, t), x ∈ Rn, u ∈ Rm, (4.8)

where h(x, t) characterizes the external disturbances and parameter variations we wish to
suppress. From Utkin in [29] These can be suppressed if

h(x, t) ∈ range (B(x, t)) , for all x and t, (4.9)

where ‘range’ is the subspace of Rn spanned by the columns of the matrix B(x, t).
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The system (4.8) is written in regular form as

ẋ1 = f1(x1,x2, t), (4.10)

ẋ2 = f2(x1,x2, t) + B2(x1,x2, t)u + h(x1,x2, t). (4.11)

The state space has been partitioned such that the state vector x1 is in the null space of the
input matrix B(x, t). Additionally, the disturbance/variation function, h(x1,x2, t), only
affects the states driven directly by the control input.

4.1.3.2 Invariance In Linear Systems

Sections 3.4 and 5.2 of [29] discuss the invariance of affine and linear systems respectively.
The linear example shows this more clearly. Consider the system [29, (5.2.1)]

ẋ = (A + ∆A(t)) x + Bu+ Qd(t). (4.12)

As in the general non-linear case, the parameter variations, ∆A(t), and the external dis-
turbances, Qd(t), must be only be linear combinations of the input vector B [7, (8)-(13)].
Mathematically this requirement can be expressed as

rank
�
B ∆A

�
=rank

�
B
�

and rank
�
B Q

�
=rank

�
B
�
. (4.13)

Or there exists matrices ΛA and ΛQ such that

∆A =BΛA and Q =BΛQ. (4.14)

The significance of (4.14) is that it gives us a tool for determining if a linear system
can be placed in regular form, and therefore be made invariant to parameter variation and
external disturbances.

4.1.4 A Poor Planar SMC Implementation

This section illustrates how a poorly formulated system model leads to an SMC formulation
that is less robust against model parameter variations and external disturbances.

In this implementation the system’s roll and pitch response are modeled as independent
planar systems. Coupling from the other axis can be viewed as an external disturbance in
each planar system. So if this formulation can be put into regular form, then it should be
robust against external disturbances (and therefore coupling from the other axis). Addi-
tionally, in regular form each system should be robust against parameter variations in its
matrix A as well. This is desirable because the spatial buoy model is non-linear and the
linearized parameters can vary significantly over the buoy’s operating envelope.

This model is assumes that that roll and pitch motion and can be modeled and controlled
as independent planar systems. The system description that follows is for one of these
planar systems. The effects of the coupling from the other axis are modeled as external
disturbances.

In this model the joint is driven by an jerk (derivative of acceleration) command. This
is desirable because it result in a smoothly varying acceleration for the joint. The joint
acceleration affects the the payload angular acceleration due to inertial coupling between
the housing and payload. This coupling is captured by the term a5 in the matrix A.
The joint velocity affects the payload’s angular acceleration due to drag effects, which are
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linearized and captured by the term a4 in the matrix A. The joint position affects the
payload’s angular acceleration due to buoyancy effects, which are linearized and captured
by the term a3 in the matrix A. The term a2 models the payload’s acceleration due to
payload rate, which could be caused by payload drag effects. Finally, the a1 term models
the payload’s acceleration due to payload angle, which could be caused by payload buoyancy
effects.

This seems a reasonable linearization of the two body buoy model. The buoyant and
drag effects of the payload have been captured by the a1 and a2 parameters. The inertia,
drag, and buoyant effects of shifting the housing with respect to the payload can all be
described by the a3, a4, and a5 terms. Presenting this system in state space form gives:

ẋ = Ax + Bu + Qd(t), (4.15)

x =

2666664
x1
x2
x3
x4
x5

3777775 ,
payload angle
payload angular rate
joint angle
joint velocity
joint acceleration

(4.16)

u =
�
u
�
, joint jerk (4.17)

A =

2666664
0 1 0 0 0
a1 a2 a3 a4 a5
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

3777775 , (4.18)

B =
�
0 0 0 0 1

�T
, (4.19)

Q =
�
0 1 0 0 0

�T
. (4.20)

The rationale for the selection of Q is that the disturbances, d(t), from the non-linear
effects of the model (including coupling from the other axis) are going to be moments on
the payload. Moments cause changes in the payload angular acceleration value, ẋ2.

Looking at the matrix A, we can see that the only place where parameter uncertainty
could occur is in the second row. So the matrix ∆A has the form

∆A =

2666664
0 0 0 0 0

∆a1 ∆a2 ∆a3 ∆a4 ∆a5
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

3777775 . (4.21)

Next we can use (4.14) to check this system formulation for invariance with respect to the
parameter variations,

BΛA =

2666664
0
0
0
0
1

3777775ΛA =

2666664
0
0
0
0
1

3777775 �ΛA1 ΛA2 ΛA3 ΛA4 ΛA5
�

=

2666664
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

ΛA1 ΛA2 ΛA3 ΛA4 ΛA5

3777775 .
(4.22)
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It is clear from (4.21) and (4.22) that ∆A 6= BΛA, and we conclude that the system cannot
be put into regular form. Therefore the parameter variations, ∆A, are not in the range of
the control input, B. So sliding mode control applied to this formulation will not be robust
with respect to the parameter variations.

Using (4.14) to check this system formulation for invariance with respect to the external
disturbances,

BΛQ =

2666664
0
0
0
0
1

3777775ΛQ =

2666664
0
0
0
0
1

3777775 �ΛQ� =

2666664
0
0
0
0

ΛQ

3777775 . (4.23)

It is clear that (4.23) does not equal the external disturbances, Qd(t), with Q specified by
(4.20). Therefore the external disturbances are also not in the range of the control input
B. So sliding mode control applied to this formulation will not be robust with respect to
external disturbances.

4.1.5 Analyzing the Implemented SMC Controller

We ultimately reached the conclusion, perhaps counter-intuitively at first, that the key to
reformulating our system in regular form is to reduce the number of system states in the
model used to generate the control law.

In this system model there are only two states for each axis, payload angle and payload
rate. The joint axis angle is commanded in position mode. The linearized system is

ẋ = Ax + Bu + Qd(t), (4.24)

x =

�
x1
x2

�
,

payload angle
payload angular rate

(4.25)

u =
�
u
�
, joint angle (4.26)

A =

�
0 1
a1 a2

�
, (4.27)

B =
�
0 b1

�T
, (4.28)

Q =
�
0 1

�T
. (4.29)

Using (4.14) to check this system formulation for invariance with respect to the param-
eter variations, we find

∆A =

�
0 0

∆a1 ∆a2

�
, (4.30)

and

BΛA =

�
0
b

�
ΛA =

�
0
b

� �
ΛA1 ΛA2

�
=

�
0 0

bΛA1 bΛA2

�
. (4.31)

Since (4.30) and (4.31) can be made equal by an appropriate selection of ΛA1 and ΛA2, the
parameter variations, ∆A, are in the range of the control input B. So sliding mode control
applied to this formulation will be robust with respect to parameter variations.

Using (4.14) to check this system formulation for invariance with respect to the external
disturbances,

Q =

�
0
1

�
, (4.32)

66



and

BΛQ =

�
0
b

�
ΛQ =

�
0
b

� �
ΛQ
�

=

�
0
bΛQ

�
. (4.33)

Since (4.32) and (4.32) can be made equal by an appropriate selection of ΛQ, the external
disturbances, Qd(t), are in the range of the control input B. So sliding mode control applied
to this formulation will be robust with respect to external disturbances.

Table 4.1: The angular parameters used in the SMC+FF and PID+FF control laws. The
possible reference frames for each parameter are N = navigation, H = housing, P = payload,
or J = joint axis.

Var Name Frame Description

rz Commanded Payload
Azimuth Angle

N The azimuth angle to point the payload at.

rv Commanded Payload
Vertical Angle

N The vertical angle to point the payload at.

φz Joint Azimuth Angle H The angle in the housing’s X-Y plane that the
payload makes with the respect to the hous-
ing’s X axis.

ψ Payload Heading N The angle of the payload’s X axis with respect
to the nav. frame’s x axis.

rx, ry Payload Reference
Angles

N The roll and pitch angles the payload should
achieve in the navigation frame.

ux, uy Desired Joint Axis
Angles

J The joint angles each joint controller is trying
to achieve.

umax Maximum Joint Axis
Angles

J The maximum joint angle permitted for each
axis.

φx, φy Joint Axis Angles J The actual joint axis angles.

εx, εy Axis Error Signal N The payload’s roll and pitch error.

Ωx, Ωy Payload Body Rate P The payload’s roll and pitch rates.

ωz Payload Yaw Rate N The payload’s yaw rate.

∆φz Nominal Joint Az-
imuth Angle Rate

H The rate to shift the joint azimuth angle at
for yaw damping.

4.2 SMC+FF Control Law

Sliding Mode Control (SMC) is a well known form of non-linear control. SMC can be very
robust with respect to parameter uncertainty and external disturbances. Some notable
features of SMC include: 1) it does not require the linearization of a fundamentally non-
linear plant, 2) its implementation typically has low computational overhead, and 3) it
is particularly well suited for plants which are discontinuous in nature (i.e. on-off type
actuators, sensors, and/or dynamics).

Fundamentally, if a system can be shown to meet certain assumptions, then a simple
control law can be formulated which will drive the system to a reduced order manifold
(a.k.a. the sliding surface). Once on the manifold, the control law will maintain the system
on the manifold, and the dynamics restricted to the manifold then stabilize the system at
the desired point.
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For the purpose of designing the sliding mode controller, the 8 DOF plant (see Section
??) is reduced to a 4 DOF plant. In this reduced order plant, the 4 DOFs are the payload
roll and pitch angles in the navigation frame and the two joint axis angles. These 4 DOFs
are controlled by the active controller. The remaining 4 DOFs for the full plant (three
translational DOFs and the payload yaw angle) are governed by the passive characteristics
of the plant.

Furthermore, if we can design a controller which is robust with respect to disturbances,
we can treat the coupling between the payload roll and pitch motion as disturbances. This
allows us to further decompose the plant model from a coupled 4 DOF system to a pair of
identical and uncoupled 2 DOF systems. In the 2 DOF plant model, the degrees of freedom
are the payload angle and the joint axis angle.

Using uncoupled 2 DOF controllers, the only parameters which each controller needs
to sense are the payload angle (in roll or pitch in the navigation frame) and the payload
angular rate (about the roll and pitch body axes).

The SMC+FF implementation here combines a discontinuous sliding mode control law
with a continuous integral term and continuous feed forward term. This control law coor-
dinates the motion of both joint axes to achieve the desired payload pointing angle in the
navigation frame. It also implements an optional active yaw rate damping feature.

The control law is executed as follows:

1. The commanded payload azimuth angle, rz, and commanded payload vertical angle,
rv, are specified. The vertical angle is the angle away from the zenith. The azimuth
angle is referenced to navigation frame’s x axis, North (in NED) or East (in ENU).
These are the angles that the payload’s long axis (Z axis) should achieve in the navi-
gation frame.

2. The required joint azimuth angle, φz, is calculated based on the payload heading, ψ,
in the navigation frame:

φz = rz − ψ. (4.34)

Figure 4.3 illustrates the relationship between these angles.

3. The joint azimuth angle, φz, and commanded vertical angle, rv, are used to calcu-
late the reference payload roll and pitch angles, rx and ry, using the universal joint
kinematic relationships from section 2.7:�

rx
ry

�
= fJxJy(rv, φz) =

24arcsin
�

sinφz sin rv√
1−cos2 φz sin2 rv

�
− arcsin(cosφz sin rv)

35 . (4.35)

4. The reference payload roll and pitch angles, rx and ry, are then passed to each axes’
respective sliding mode controller. These are the reference payload roll and pitch
angles, in the navigation frame, that the two independent planar controllers are trying
to achieve. Taking the x axis as an example, the calculation for the desired joint x
axis angle, ux, proceeds as:

(a) Calculate the axis error as the difference between the actual payload roll angle
and the reference roll angle, in the navigation frame, using

εx = θx − rx. (4.36)
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Figure 4.3: This top-down view (in the navigation frame) shows the relationship between
the commanded payload azimuth angle, rz, the joint azimuth angle, φz, and payload yaw
angle, ψ. The navigation frame’s x and y axes are labelled nx and ny. The projection of
the payload frame’s x and y axes into the navigation frame’s x-y plane are labelled px and
py.

(b) Calculate the sliding parameter for the x axis from

sx = Ωx + Cεx, (4.37)

where Ωx is the rotational velocity of the payload about its X axis, and C is the
SMC gain which determines the slope of the sliding surface.

(c) Calculate the desired joint x axis angle from the SMC+FF law as

ux = −
 
α

������Ωx

εx

������+ δ

!
sat(sx, h) +Kffrx −Ki

Z
εx dτ, (4.38)

where sat(s, h) is a linearized saturation function of the form

sat(s, h) =

8<: 1 if s > h,
s/h if −h ≤ s ≤ h,
−1 if s < −h.

(4.39)

α and δ are the discontinuous sliding mode gains. Ki is the continuous integral
gain term. Kff is the continuous feed forward gain term. The discontinuous
sliding mode term is of the form suggested by Utkin in [29, (5.1.7)]. The gain
α increases the magnitude of the sliding mode term when the system is further
away from the manifold s = 0. The gain δ is the minimum amount by which
sliding mode term will change when s changes from −h to h or vice versa. h
is the size of the boundary layer around the sliding surface to help minimize
chattering by the controller. See Appendix ?? for a more complete explanation.

The desired y axis joint angle is calculated in a similar manner.

5. Next the optional active yaw damper is implemented. The yaw damper works by
adjusting the joint’s x and y axis angles to cause the housing and payload to rotate
about their long axes, without changing the joint vertical angle, φv. The rate of
housing and payload rotation is proportional to the payload yaw rate in the navigation
frame. The active yaw damping calculations are:
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(a) Calculate the payload yaw rate in the navigation frame as

ωz =
�
0 0 1

�
B2Ω2. (4.40)

Where B2 is the direction cosine matrix giving the payload’s attitude in the nav-
igation frame, and Ω2 is the payload’s rotational velocity vector in the payload
body coordinates.

(b) Calculate the nominal change in joint azimuth angle as

∆φz = −Kyawωz, (4.41)

where Kyaw > 0 is a constant gain. Note that ∆φz is an angular rate with units
of rad/sec.

(c) Calculate the partial derivatives ∂φx
∂φz

and
∂φy
∂φz

using (2.94) and (2.95) with the
current values of φz and φv.

(d) Adjust the desired joint axis angles by

ux = ux +
∂φx
∂φz

∆φz ∆t, (4.42)

uy = uy +
∂φy
∂φz

∆φz ∆t, (4.43)

where ∆t is control loop step size. Under (4.42) and (4.43) the magnitude of the yaw
damper contribution is independent of control loop execution rate.

6. Soft limits are applied to each of the desired axis angles to ensure that each joint axis
is not driven beyond its stops, i.e. |ux| ≤ umax and |uy| ≤ umax. For the prototype
buoy configuration, these soft limits are set to ±47 degrees to prevent hitting the
mechanical hard stops included in the joint model.

7. The updated desired joint axis angles, ux and uy, are sent to each of the low level axis
controllers, and the control loop repeats.

This calculation sequence is performed and sent to the low level (hardware) joint axis
controllers at a nominal control rate of 12.5 Hz for most of the trials. The low level joint
controllers drive their axes toward their desired control angles, while enforcing both velocity
and acceleration limits on the axis motion. The details of the modeling the low level axis
controllers is presented in Appendix C.

Because of the joint velocity and acceleration limits, if the desired joint axis angle
changes significantly from control interval to control interval, then the joint may never
reach a particular desired axis angle. A good example of this behavior is when the system
is maintaining itself close to the sliding surface. The sliding surface parameter will vary
from positive to negative at each control interval, and this will cause the actual joint angle
to be an “average” of the the oscillating desired axis value. The low level axis controller
also acts as a low pass filter which helps reduce chatter.
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4.3 PID+FF Control

As an alternative to the SMC+FF control law presented above, the buoy can also be con-
trolled using a proportional-integral-derivative controller with a feed forward term (PID+FF).
PID control is one of the most common control strategies for single variable systems. There
is a vast body of literature on PID control. Additionally, many industrial control prod-
ucts are readily available to apply PID control to an almost limitless range of sensors and
actuators. The digital motor controller discussed in [1] is an excellent example of one
such product. It is for this reason that PID control was selected to bench-mark the SMC
controller against.

The same mixing logic, feed forward term, and optional active yaw damper are used
with the continuous PID law replacing the discontinuous SMC law. This results in the
SMC+FF control law specified by (4.38) being replaced by the following:

ux = −Kpεx −KdΩx −Ki

Z
εx dτ +Kffrx. (4.44)

Here the proportional gain, Kp, weights the effects of the payload axis error signal. The
derivative gain, Kd, weights the effects of payload rate and most strongly affects the tran-
sient response of the system. And the integral gain, Ki, weights the effects of accumulated
payload error and is used to eliminate steady state error in the system at the expense of
transient performance. The proportional term will affect both the transient and steady
state system performance.

Tuning the gains of a PID controller is typically a trial and error process. The literature
does suggest a variety of methods for initial estimates at gain values and tuning processes,
without any one method being particularly dominant

The joint’s y axis is controlled in a similar manner.

4.4 The Integral Gain Ki

In general, using the integral of an error signal as part of the feedback signal is a means of
eliminating steady state error in many systems. This improved steady state performance
comes at the expense of the system’s transient performance. As the the integral gain is
increased, the system’s response will become more sluggish. If the integral gain is made too
big it will cause many systems to become unstable.

In the early stages of this research, before the complete spatial buoy model was developed
and implemented, a planar two-body buoy system was modeled. In this formulation, the
buoy’s motion was constrained to the x-z plane and the joint was a single degree of freedom
pivot between the two bodes. In this formulation there was no “other” axis to cause coupling
into the current axis. Without this source of disturbances (even with the non-linear buoyant
and drag effects) the system was well behaved enough that the PID and SMC controllers
had no problems stabilizing it.

In the planar formulation, the integral term was effectively used in both PID and SMC
control to bring the system’s steady state error to zero. This was possible even without
the feed forward term. With the feed forward term, only a very slight integral gain was
required to eliminate the system’s steady state error. This had minimal impact on the
system’s transient performance. Because of its effectiveness in the planar formulations, the
integral term was included in the control laws for the spatial system.
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Once the full spatial model was completed, it became clear that the dominant source
of disturbances was the coupling from the other axis’s motion. In the presence of these
disturbances the integral term provided no benefit. Increasing it (attempting to make it
more effective) only made the spatial system’s performance worse. It is hypothesized that
the increased integral gain worsened the transient performance of the system to the point
that it could no longer respond fast enough to reject the disturbances induced by the other
axis’s motion.

It is for this reason that in the spatial buoy model the integral gain, Ki, is set to zero
for both the SMC+FF and PID+FF laws.

Additionally, the issue of of “integrator windup” should always be considered whenever
the integral of an error signal is used as a feedback signal. If system has a error of constant
sign which the controller cannot (or is very slow at) correcting, the integral of the error
signal will grow without bound. Over time, this causes the integral term to completely
saturate the control signal and render the other terms ineffective at providing feedback.
This issue of integrator windup is often not emphasized in elementary texts on PID control.
Typical techniques for handing integrator windup include:

1. Saturating the output of the integrator. This approach is evident in the block diagram
of the Maxon EPOS2 motor controller shown in [1, Figure 1] and is proposed by Fossen
in [9, Sec 6.4.1].

2. A negative feedback loop can be wrapped around the integrator with a dead-zone de-
vice in the feedback path. In this configuration, when the integrator’s output exceeds
the threshold of the dead-zone device, a fast feedback signal is applied to the inte-
grator to rapidly bring the integrator’s output back into the region permitted by the
dead-zone device. Such an arrangement is suggested by Stevens and Lewis in [26, p.
225].

3. A deadbeat observer can be implemented in the digital controller to provide anti-
windup protection. Such an approach is presented by Stevens and Lewis in [26, p.
622-626]

4. The error signal can be defined as the difference with respect to a reference trajectory
driven by a reference model. This reference model has dynamics similar to that of
the plant such that large changes in the system state and the correspondingly large
changes in the error signal are avoided. This is the approach presented by Fossen
in [9, Sec 6.4.1].

4.5 Feed Forward Gain Kff

The feed forward gain term, Kff , in (4.38) is one of the most important parameters to
determine the quality of the buoy’s response. It is determined by the mass distribution and
joint location of the buoy and the resulting static equilibrium point.

The feed forward term places the joint near the correct angles for pointing the payload
in static equilibrium. This means that 1) the SMC or PD terms are mainly driving the
transient response to zero and 2) the integral term has a much smaller steady state bias to
correct. This allows both groups of terms to be significantly more effective.

Kff is determined by performing the following procedure on one of the payload axes.
For this example the procedure will be executed about the payload’s X axis.
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1. Set all control law gains to zero, except for the Kff gain. Set Kff to an initial guess
for its value. Lacking information for a good initial guess for Kff , set Kff = 1.

2. Set the axis’ payload reference angle, rx, to 35 degrees. Set the other axis payload
reference angle, ry, to zero. By fixing these reference angles and having the other
gains set to zero, this effectively locks the joint at a vertical angle equal to the joint
axis angle, i.e. φv = φx.

3. Allow the buoy to come to rest in static equilibrium, and calculate the axis error from
εx = θx − rx, where θx is the actual payload roll angle (and in this case the actual
payload vertical angle too) in the navigation frame.

4. Iteratively adjust Kff (and therefore adjust the joint axis angle, φx, and the joint
vertical angle, φv) until the axis error, εx, is very close to zero at static equilibrium.

5. The final Kff value for the tested buoy configuration can be used as long as the buoy’s
mass parameters and joint location do not change. This Kff value can be used for
either the SMC+FF or PID+FF control laws. Additionally, either control law could
be used in this procedure since setting all the other gains to zero makes both laws the
same.

A Kff > 1 means that the buoy’s mass distribution and joint location is such that to
achieve a particular payload vertical angle a larger joint vertical angle is required. This
means that the range of payload vertical angles achievable by the system will be less than
range of motion of the joint. Conversely, for Kff < 1, the buoy is ballasted such that a
particular payload vertical angle can be achieved with a smaller joint vertical angle. This
allows the buoy to cover a wider range of payload vertical angles for a given joint design.
This comes at the expense of passive stability and sensitivity to joint motion. Figure 4.4
illustrates these effects. Kff = 1 is a conceptual idea only. A payload which has mass and
a CM not at the joint location will have Kff 6= 1.

Table 4.2: The feed forward gain values for each buoy configuration.
Configuration Kff

Prototype Buoy Configuration 1.60

BuoyGroupSonoA 5x36 J10 0.441
BuoyGroupSonoA 5x36 J15 1.255
BuoyGroupSonoA 5x36 J20 0.958
BuoyGroupSonoA 5x36 J25 0.87

4.6 Composite Pointing Error

It is useful to have a metric of how well the payload is pointing at the aim point. A good
metric is the angle between the payload pointing vector and the aim point vector. These
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Figure 4.4: The payload reference angle, rx, and joint axis angle, φx, for different ranges of
Kff values. Kff = 1 is a conceptual idea only. A payload which has mass and a CM not at
the joint location will have Kff 6= 1. Buoys with Kff < 1 have less passive stability than
those with Kff > 1, however, they can cover a larger arc of sky.

two vectors are calculated by:

p̃z = B2

2640
0
1

375 , (4.45)

r̃aim =

264cos rz sin rv
sin rz sin rv

cos rv

375 . (4.46)

The payload pointing vector, p̃z, is equivalent to the third column of the direction cosine
matrix B2, which specifies the payload’s attitude in the navigation frame.

The angular difference between the payload pointing and aim point vectors is calculated
using the cross and dot products of the two vectors with the four quadrant arctangent
function,

εaim = atan2 (|p̃z × r̃aim| , p̃z · r̃aim) . (4.47)

This is called the composite point error because it simultaneously accounts for both the
azimuth and elevation error contributions.
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4.7 Guaranteeing SMC Stability

To perform an analysis of when the sliding mode controller will guarantee stability let’s
return to the example two state system presented in Section 4.1. The non-linear reduced
DOF model for the roll or pitch motion of the payload is given by

ẋ1 = x2, (4.48)

ẋ2 = h(x) + g(x)u, (4.49)

where x1 is the roll or pitch angle, x2 is roll or pitch angular rate, and the control u is the
joint axis angle.

As in Section 4.1, we can define a sliding manifold for the system as

s(x) = Cx1 + x2 = 0. (4.50)

For the stabilizing control to be guaranteed, we need to show that

k(x) >

����Cx2 + h(x)

g(x)

���� , for all x, (4.51)

where C is the slope of the sliding surface and the control u is related to k(x) by u =
−k(x)sign (s(x)). To calculate the right hand side of (4.51) we need to make assumptions
or estimates for the following:

1. What is the maximum payload rotational rate, x2, we are guaranteeing stability for?

2. What is the maximum payload acceleration imparted as a function of the state vector,
x, alone? This is the same as asking what is the maximum magnitude of h(x)?

3. What is the minimum magnitude of the input weighting function g(x)?

To simplify this analysis, assume that the buoy can be modeled by the planar system
shown in Figure 4.5 and only the buoyant righting moments are driving it.

The magnitude of the buoyant and gravity forces on each body are

fb1 = 1
4ρgπd

2
1L1, (4.52)

fb2max = 1
4ρgπd

2
2L2, (4.53)

fg1 = gm1, (4.54)

fg2 = gm2, (4.55)

where di is the diameter, Li is the length, and mi is the mass of each body. ρ is the
density of the fluid and g is the acceleration due to gravity. fb2max is the magnitude of the
payload buoyant force which would occur if the payload were fully submerged. However,
at equilibrium the payload is not fully submerged and the magnitude of the buoyant forces
must be equal to the magnitude of the gravity forces. This allows the payload buoyant force
at equilibrium to be estimated as

fb2 = fg1 + fg2 − fb1. (4.56)

The fraction of the payload which is submerged, fsub, can be calculated from

fsub =
fb2

fb2max

, (4.57)
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Figure 4.5: The planar system used to analyze the SMC control law for guaranteed stability.

where 0 ≤ fsub ≤ 1.
To calculate the buoyant and gravity moments about the buoy’s joint, we need to find

the distances between each force and the joint. Using Figure 4.5, these distances are found
from:

Rg1 = R1J −R1cm, (4.58)

Rg2 = R2J +R2cm, (4.59)

Rb1 = R1J − L1/2. (4.60)

The location of the payload’s center of buoyancy with respect to the joint, Rb2(fsub, x1),
is not constant. It is a function of both the payload’s submerged fraction and angle. It is
approximated in this planar model by

Rb2(fsub, x1) = R2J + 1
2L2 [fsub + (1− fsub) sinx1] . (4.61)

Given these distances and forces, the total moment on this planar system is

Mtotal = [fg2Rg2 − fb2Rb2(fsub, x1)]| {z }
Mp(x1)

sin(x1) + [fb1Rb1 − fg1Rg1]| {z }
Mh

sin(x1 − u). (4.62)

The term Mp varies with the payload angle, x1, and the term M1 does not because it is the
assumed that the housing stays fully submerged.
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This results in a payload rotational acceleration of

ẋ2(x1, u) =
Mp(x1)

J
sin(x1) +

Mh

J
sin(x1 − u), (4.63)

where J is the total rotational inertia about the buoy’s CM.

Equation (4.63) it is not quite in the form of (4.49) because ẋ2 is not linearly related
to the control u. Recall in the SMC law specified by (4.38), the feed forward gain, Kff ,
is responsible for positioning the payload close to its static equilibrium angle, thus leaving
the SMC control terms to primarily correct for disturbances.

A Taylor series for a function f(x) in vicinity of x = a is

f(x) = f(a) +
1

1!

df(a)

dx
(x− a) +

1

2!

d2f(a)

dx2
(x− a)2 +

1

3!

d3f(a)

dx3
(x− a)3 + · · · (4.64)

Using the first two terms of the Taylor series for our problem, we can find the acceleration
of the payload for a joint angle u′ in the vicinity of u as

ẋ2(x1, u
′) ≈ Mp(x1)

J
sin(x1) +

Mh

J
sin(x1 − u)− Mh

J
cos(x1 − u)(u′ − u). (4.65)

If we assume that the joint angle is near the angle specified by the feed forward gain of

u = Kffx1, (4.66)

where x1 becomes the desired static equilibrium angle of the payload, we can substitute
(4.66) into (4.65) to give

ẋ2(x1, δu) ≈ Mp(x1)

J
sin(x1) +

Mh

J
sin (Gffx1)| {z }

h(x)

+
Mh

J
cos (Gffx1)| {z }
g(x)

δu. (4.67)

Here we have made the substitutions Gff = 1−Kff and δu = u−u′. This gives us a system
in form of (4.49) with the new control, δu, specified as the angular difference between the
actual joint angle and the angle commanded by the feed forward term of the control law.
Additionally, we have made the following assumptions:

1. The drag and inertial effects in the system are neglected. This is reasonable as drag
effects should make the system easier to control because it can dissipate energy faster
and therefore reach equilibrium faster. Including the inertial effect between the bodies
gives the actuator more control authority due to the acceleration of the joint. By
neglecting both of these effects we have made the analysis more conservative.

2. The buoy is at, or very near, vertical translational equilibrium with the housing fully
submerged and the payload partially submerged. The buoy will only be out of this
equilibrium condition for short periods of time. If it is significantly out of vertical
equilibrium regularly, then it is likely a problem with the buoy’s passive response and
not the SMC control law.

3. The payload and joint angles are near the designed static equilibrium angles specified
by the feed forward gain in the control law.
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4. All the locations (center of mass, center of buoyancy, and joint pivot point) are located
on the long axes of their respective bodies.

5. The effects of the cylinder’s cross-sectional shape are neglected when calculating the
center of buoyancy location for the partially submerged payload.

In the following plots the mass and location parameters for a planar representation of
the prototype buoy configuration have been used.
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Figure 4.6: The SMC controller model h(x) with and without fsub effects. For the h(x)
curve with the fsub effects (blue), the payload is assumed to be partially submerged at
vertical static equilibrium. For the h(x) curve without the fsub effects (green), the payload
is assumed to be completely submerged. The maximum rotational acceleration due to the
states alone, h(x), is reduced approximately 10% by including the effects of the partially
submerged payload.

The magnitudes of the SMC controller model terms h(x) and g(x) vs. payload angle,
x1 are plotted in Figure 4.7. Here the joint control is assumed to be the angle u = Kffx1.
As the payload angle increases, the magnitude of h(x) also increases and the magnitude of
g(x) decreases.

Given that we now have estimates for h(x) and g(x) as functions of payload angle, we
can substitute these values in to (4.51) to estimate the minimum gain k(x) required to
guarantee stability. We also must make an estimate for the maximum payload rotation rate
which the SMC controller is required to guarantee stability for. The rotational velocity
term in (4.51) is Cx2.
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Figure 4.7: The magnitudes of the SMC controller model terms h(x) and g(x) vs. payload
angle, x1. Here the joint control is assumed to be that specified by the feed forward term,
u = Kffx1. As the desired payload equilibrium angle increases, the magnitude of h(x) also
increases and the magnitude of g(x) decreases.

As the payload’s angular equilibrium point is specified further away from the vertical,
the range of motion available for the SMC controller is reduced in one direction because
the joint is physically limited to a maximum joint angle of umax. Therefore the maximum
SMC control, δumax, is given by

δumax = umax − |Kffx1|. (4.68)

The minimum value of k(x) to guarantee stability by (4.51) is plotted in Figure 4.8 for
three different assumed payload rotation rates, x2. From this analysis stability of the SMC
controller is only guaranteed up to desired payload equilibrium angles of 9 to 12 degrees
from the vertical. This is a significantly more conservative estimate than the numerical
trials, presented in Chapter 5 seem to indicate. It is not surprising that these results
are more conservative than what we expect to actually be possible, due to the conservative
assumptions of neglecting drag on the bodies and the inertia effects of the joint acceleration.
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Figure 4.8: The minimum value of k(x) to guarantee stability via (4.51). It is plotted for
three different payload rotation rates (0, 100, and 200 deg/s). As the equilibrium joint
angle specified by Kffx1 increases, the range of motion available for δu decreases because
the physical joint is limited to a maximum joint angle, umax (recall that |δu| = k(x)).
From this analysis, the stability of the SMC controller is only guaranteed up to desired
payload equilibrium angles of 9 to 12 degrees from the vertical. This is a significantly more
conservative estimate than the numerical trials seem to indicate.
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Chapter 5

Simulation Results

The development presented in Chapter 2 is the result of a desire to model the dynamics of
the system at a reasonably high level of fidelity. This level of fidelity results in a system
formulation that is dependent on a large amount of numerical computation to accurately
capture and describe the non-linear effects in the full 8 DOF system. This dependence on
numerical computation means that the system formulation is not well suited to an explicit
analytic treatment to understand the effects of the major factors like control rate, latency,
actuator acceleration, and the SMC gains.

We would like to understand the controller’s and buoy system’s performance with respect
to a variety of internal parameters including: the three sliding mode gains (α, δ, and
C), the controller update rate, controller/sensor latency, maximum actuator acceleration,
commanded payload vertical angle, and more. This is essentially a large multidimensional
search problem, where we would like to know which combinations of the above parameters
produce acceptable results.

A numerical multidimensional search is very difficult to complete on this system. Section
5.2 illustrates why for the simpler case of just searching across three SMC gain values. Be-
cause of the problems associated with performing multidimensional searches on this system,
these effects were evaluates by a series of single dimensional searches. The effects of each
parameter to be investigated was varied while the other parameters were held constant.

To avoid complications due to the interplay of multiple suboptimal parameter values
while keeping the computational burden reasonable, the best compromise seems to be that
when investigating the effect on one parameter, the values for the other parameters should
be selected such that they give acceptable performance. Additionally, the values selected
should be reasonable for an implemented system. For example, having the control loop run
at 12.5 Hz is reasonable, but having it run at 100,000 Hz is not reasonable.

The nominal scenario, presented in Section 1.1, of a buoy communicating with a satellite
was used the basis for the desired performance of the prototype buoy configuration. In this
scenario acceptable performance is achieved if the composite payload error is less than 10
degrees. However, it is preferred that the composite payload error be less than 5 degrees.

Numerous trials were performed by numerical simulation to evaluate the prototype buoy
configuration and the SMC+FF control law under a range of gain values and conditions.
Figure 5.1 shows three screen captures from a simulation trial. In the figure the prototype
buoy configuration is in the process of righting it self. An example of the animated results
is available at “http://www.youtube.com/watch?v=6RwLC45CJmM”.
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Time: 0.00 Seconds Time: 0.50 Seconds Time: 1.00 Seconds

Figure 5.1: Three screen shots, half a second apart, from the animation for one of the
numerical simulations. The prototype buoy is the in the process of righting itself and
moving the housing to stabilize the payload.

5.1 Prototype Buoy Configuration

Initially this research was performed with crude models of four possible buoy configurations.
The particulars of these “J series” models are discussed in Appendix B. For the final stages
of this research a detailed mechanical model of a buoy implementation was developed.

This level of detail was to ensure that the expected performance predicted by simulation
was based on a size and mass distribution of practical significance. The CAD model of the
prototype buoy was used to calculate the required parameters for the numerical simulation.
These parameters are listed in Table 5.1. This prototype buoy is sketched in Figures 5.2
and 5.3.
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Figure 5.2: Sketches of the housing and payload units for the prototype buoy model simu-
lated in this research.
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Figure 5.3: A sketch of the complete prototype buoy model.
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Table 5.1: The mass and geometry parameters for the numerical simulation derived from
the CAD model of the prototype buoy.

Parameter Housing Payload

Mass [kg] (lbs) 1.553 (3.42) 0.993 (2.19)

OD [m] (in) 0.079 (3.125) 0.079 (3.125)

Length [m] (in) 0.215 (8.47) 0.418 (16.45)

Rcm [m]

264−0.0006
0

0.1002

375 264 0
−0.0004
0.2032

375
Rj [m]

264 0
0

0.309

375 264 0
0

−0.094

375
Jcm [kgm2]

264 0.0109 0 −0.0001
0 0.0109 0

−0.0001 0 0.027

375 2640.0318 0 0
0 0.0317 0
0 0 0.010

375
CDf

1 1

CDmXY
3 3

CDmZ
0.1 0.1

nfins 4 0
lfins [m] 0.203 0
wfins [m] 0.0391 0
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5.2 SMC Gain Search

Early in this research, the gain values were selected by hand after many trials. The perfor-
mance of the system was evaluated by comparing the composite error plot for each of the
trials. Quantitative measures were calculated by evaluating the maximum and RMS error
values for the payload composite pointing error from 5, 10, and 15 seconds onward. Given
that the feed forward gain term is determined by the mass distribution in the buoy and the
integral gain term was found to have little positive effect (and so is set to zero), this leaves
three terms in the control law to tune the system performance with: C, α, and δ. The yaw
damper gain, Kyaw, effects are discussed separately.

Some attempts were made at using a polytope simplex algorithm to perform a search
across these three parameters for a set which minimizes the composite payload RMS er-
ror from 15 seconds onward. This was attempted with MATLAB’s ‘fminsearch’ function.
However, this search consistently failed to converge on values that were significantly differ-
ent from initial values. The failure to converge was due to the performance metric being
“noisy”.

Instead of a true multidimensional search, a series of one dimensional searches were
conducted. Each of the SMC parameters was varied across a range of values, while the
other two were held constant. These one dimensional searches revealed good value ranges
for the parameters C, α, and δ. A second round of one dimensional searches was run,
where the values used for the constant terms were in the good range from the first round
of searches. The results from these searches are plotted in Figured 5.4 through 5.6.

Two performance metrics were devised. 1) a “steady state” performance metric, which
consists of calculating the RMS value for the composite payload pointing error from 15
seconds onward; and 2) a “transient” performance metric, which calculates the composite
payload error RMS values from time 3 to 8 seconds. In all cases time zero was when the buoy
was released from an extreme non-equilibrium condition. There were no other transients
applied to the system, i.e. no payload re-positioning commands were applied after buoy
release.
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Figure 5.4: The steady state (blue) and transient (green) performance metrics as a function
of the SMC Gain C. The prototype buoy model was released from flat on the water surface.
α = 0.5 and δ = 5 deg. The controller was run at 12.5 Hz and there was a system latency
of 80 msec (one control period). From this data the transient metric is minimized from
approximately 1.2 < C < 1.7. The steady state metric becomes larger and noisier when
C > 1.3.
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SS Metric: t>15 sec
TR Metric: 3 < t < 8 sec

Figure 5.5: The steady state (blue) and transient (green) performance metrics as a function
of the SMC Gain α. The prototype buoy model was released from flat on the water surface.
C = 1.2 and δ = 5 deg. The controller was run at 12.5 Hz and there was a system latency
of 80 msec (one control period). From this data the transient metric is minimized from
approximately 0.25 < α < 2.0. The steady state metric becomes larger and noisier when
α > 0.5.
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SS Metric: t>15 sec
TR Metric: 3 < t < 8 sec

Figure 5.6: The steady state (blue) and transient (green) performance metrics as a function
of the SMC Gain δ. The prototype buoy model was released from flat on the water surface.
C = 1.25 and α = 0.5. The controller was run at 12.5 Hz and there was a system latency
of 80 msec (one control period). From this data the transient metric is minimized when
δ < 10 deg. The steady state metric was minimized from 4 deg < δ < 6 deg.

89



5.3 Control Rate Effects

A series of trials was performed to understand the effects of control rate on the system
performance. The simulation was performed by releasing the buoy from flat on the surface
of the water and commanding it to a particular azimuth and vertical angle. At 10 seconds
the payload was commanded to a new azimuth angle. For these trials the control loop was
run progressively slower with no system latency. Figure 5.7 shows the composite payload
pointing error for a number of these trials. In these trials the base simulation rate is 50 Hz
(20 msec).

There was no significant change in performance when the control loop was slowed from
20 msec (50Hz) to 100 msec (10 Hz). “Acceptable” performance was still obtained when the
control loop was slowed to 200 msec (5 Hz), as the composite payload error never exceed
5 degrees after the second transient. Further slowing the control loop causes the system
performance to rapidly degrade.
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Control Rate: 100 ms (10.0 Hz) Delay: 0 ms
Control Rate: 200 ms (5.0 Hz) Delay: 0 ms
Control Rate: 240 ms (4.2 Hz) Delay: 0 ms
Control Rate: 280 ms (3.6 Hz) Delay: 0 ms

Figure 5.7: The composite payload error for the prototype buoy model responding to two
transients (the release from initial conditions and an azimuth reposition at 10 seconds),
with the control loop running at different rates. There is no system latency. There is not
much change in performance between the 20 msec and 100 msec cases. System performance
degrades rapidly when the control loop slows to less than 200 msec (5 Hz).
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5.4 System Latency Effects

Here we consider the effects of delay on the system performance. These delays could come
in the form of sensor delays or control actuator delays. In the simulation all these delays are
lumped into a single overall system latency value. The delay is implemented by calculating
the desired control signals for the joint axes, and then delaying the application of those
signals to the joint by the delay value.

In all cases the control loop is running at 40 msec (25 Hz). There is no significant
performance degradation through delays of approximately 120 msec. System performance
starts to degrade significantly when system latency is 160 msec and longer.
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Control Rate: 40 ms (25.0 Hz) Delay: 160 ms
Control Rate: 40 ms (25.0 Hz) Delay: 200 ms

Figure 5.8: The composite payload error for the prototype buoy model responding to two
transients (the release from initial conditions and an azimuth reposition at 10 seconds),
with various system latency values. In all cases the control loop is running at 40 msec (25
Hz). There is no significant performance degradation through delays of approximately 120
msec. System performance starts to degrade significantly when system latency is 160 msec
and longer.
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5.5 Fin Effects

The prototype buoy configuration includes 4 radial fins mounted on the housing. These fins
are to improve the yaw control of the buoy, by providing additional drag and inertia about
the long axis of the buoy housing.

In this trial we can see that the fins provide a slight but noticeable improvement in
payload composite error over the non-finned case.
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c1: With Fins
c2: Without Fins

Figure 5.9: The composite payload error for the prototype buoy model responding to two
transients (the release from initial conditions and an azimuth reposition at 10 seconds)
with (blue) and without (green) passive yaw fins. The fins provide a slight but noticeable
improvement over the non-finned case.
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5.6 Yaw Damper Effects

Next the effects of the active yaw damper were evaluated. The prototype buoy configuration
does not appear to benefit from the active yaw damper feature of the control law. This
is shown in Figure 5.10. As Kyaw is increased beyond about 20, the system performance
degrades.

In these cases the commanded vertical angle is 35 degrees, and at 10 seconds the payload
is repositioned in azimuth by 120 degrees.

However, in earlier trials with the J series buoy configurations, there were cases where
the active yaw damper clearly helped. One example is presented in Figure 5.11.
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Figure 5.10: The composite payload error for the prototype buoy model responding to two
transients (the release from initial conditions and an azimuth reposition at 10 seconds) with
(blue) and without (green) the active yaw damper. The control loop is running at 20 msec
(50 Hz) with no system latency. Under these conditions the active yaw damper does not
significantly improve the system response.

93



0 5 10 15 20 25 30
-10

0

10

20

30

40

50

60
Payload Vertical Error vs. Time

Time (sec)

P
ay

lo
ad

 V
er

tic
al

 E
rr

or
 (

de
g)

 

 
c1: Buoy J10: K

yaw
 = 1.5

c2: Buoy J10: K
yaw

 = 0

0 5 10 15 20 25 30
-100

-80

-60

-40

-20

0

20
Payload Azimuth Error vs. Time

Time (sec)

P
ay

lo
ad

 A
zi

m
ut

h 
E

rr
or

 (
de

g)

 

 

c1: Buoy J10: K
yaw

 = 1.5

c2: Buoy J10: K
yaw

 = 0

Figure 5.11: The vertical and azimuthal payload error for stabilizing the J10 buoy payload
at a vertical angle of 35 degrees. The c1 system (blue) uses the active yaw damper and
the c2 system (green) does not. The yaw damper’s positive effects are clear in both the
azimuthal and vertical responses. For this trial the other control gains are: C = 0.25,
Kff = 0.441, α = 0 (deg), δ = 20 (deg), h = 0.02, and Ki = 0.0.
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5.7 Acceleration Limit Effects

In the simulation, the control authority of each joint axis is specified by the maximum
allowed joint acceleration. Since joint acceleration is proportional to the applied joint
torque, the limit on acceleration also specifies a limit on joint torque. Figure 5.12 plots the
payload composite error for various joint acceleration limits. The control loop is running
at 80 msec (12.5 Hz) with a system latency of 80 msec. Payload composite error does not
improve significantly for system acceleration limits greater than 300 deg/sec2. However,
system performance does degrade rapidly for acceleration limits less than 300 deg/sec2.
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Figure 5.12: The composite payload error for the prototype buoy model responding to two
transients (the release from initial conditions and an azimuth reposition at 10 seconds)
for various joint acceleration limits. The control loop is running at 80 msec (12.5 Hz)
with system latency of 80 msec. For this buoy configuration, a joint acceleration limit of
300 deg/sec2 (red) is the critical value above which system performance is good and below
which system performance is poor.
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5.8 Initial Condition Effects

Five different sets of initial conditions were used with the prototype buoy configuration to
assess how sensitive the controller’s performance is to initial conditions. These sets of initial
conditions place the buoy at different attitudes and are illustrated in Figure 5.13. The roll
and pitch angles for each initial condition are listed in Table 5.2. The composite payload
pointing error for each initial condition is plotted in Figure 5.14. The controller did a good
job at stabilizing the payload from initial conditions 2, 3, and 5.

Figure 5.13: The initial positions and attitudes compared in the simulation. These condi-
tions are numbered 1 through 5. In all cases the buoy starts at rest. The housing’s and
payload’s x, y, and z axes are shown in purple, yellow, and cyan respectively. In all cases
the housing coordinate system starts 2.5 cm (1 inch) below the water’s surface. Initial con-
ditions 1 and 2 are outwardly very similar, however, the difference is in their the orientation
of their x and y axes with respect to the water’s surface. This difference results in the plane
of oscillation occurring in different planes of joint azimuth actuation.

For initial condition 4, the buoy starts with a vertical attitude. However, it starts with
the base of the housing just below the water’s surface. Therefore when released, it drops
straight down, completely submerging, and then bobs up and down significantly.

For initial conditions 1 and 2 the overall initial attitudes of the buoy are very similar.
The principal difference is in the orientation of the buoy’s X and Y axes with respect to
the surface of the water. It is not clear why one configuration performs well and the other
does not. This could be because difference in orientation between the two trials results in
a difference of the orientation of the joint axes with respect to the buoy’s initial motion.
However, it is difficult to draw any conclusions based on only two trials. An area for further
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investigation could be performing a large number of trials in which the buoy starts flat on
the water’s surface, and its orientation about the long axis is selected at random. This
would allow a characterization of the prevalence and cause of this phenomenon.

In all cases at time zero, the payload is commanded to a vertical angle of 35 degrees and
an azimuth angle of 0 degrees. After 10 seconds, the payload azimuth angle is commanded
to shift to 90 degrees.

Table 5.2: Initial roll and pitch angles for each initial condition configuration. Additionally,
in all cases the buoy starts at rest with the joint straight, the housing coordinate system
(located at the center of the bottom face) located 2.5 cm (1 inch) below the water’s surface,
and a yaw angle of zero degrees.

IC pitch (deg) roll (deg)

1 45 85
2 85 20
3 -30 45
4 0 0
5 -45 -45
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Figure 5.14: The composite payload error for the prototype buoy model responding to two
transients (the release from initial conditions and an azimuth reposition at 10 seconds) for
various initial conditions. The control loop is running at 80 msec (12.5 Hz) with system
latency of 80 msec. Initial conditions 1 and 4 result in poor buoy performance.

The poor performance in responding to initial conditions 1 and 4 can be remedied in
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several ways, including:

1. Reducing the system latency and speeding up the control loop.

2. Commanding the payload to be stabilized about the vertical right after release.

An approach to reducing the system sensitivity to the initial conditions is to command
the system to its most stable configuration first. Due to symmetry, the buoy’s most robust
state is with the payload commanded to a vertical angle. Figure 5.15 plots the effects on
initial conditions 1 and 4 by having the payload commanded to the vertical for the first
3 second after release. This is compared with immediately commanding the payload to
the desired non-vertical angle. It is interesting that there is no noticeable performance
improvement, until after the azimuthal reposition command at 10 seconds.
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Figure 5.15: The composite payload error for initial conditions 1 (blue) and 4 (red), without
an initial vertical payload command (dotted) and with the payload being commanded to
vertical for the first 3 seconds (solid). By commanding the payload initially to vertical after
release, we can see that system can maintain much better pointing performances from then
on.

Figure 5.16 show the improved performance by getting the payload completely stable
about the vertical before performing additional aiming. The payload is commanded to
vertical for 15 seconds after release, then it is commanded to a vertical angle of 35 degrees
and an azimuth angle of 90 degrees. All 5 initial conditions are plotted. In all cases it takes
the buoy 6 seconds (or less) to stabilize the payload about the vertical.
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Figure 5.16: The composite payload error for all 5 initial conditions. The payload is com-
manded to vertical for the first 15 seconds, then it is commanded to a vertical angle of 35
degrees and an azimuth angle of 90 degrees. By completely stabilizing the payload about
the vertical, we can see that after 6 seconds, the effects of all initial conditions have been
eliminated.

99



5.9 Vertical Angle Effects

The discussion about the buoy’s performance with respect to its initial conditions has
illustrated a significant point. The composite payload error is much less when the payload
is stabilized vertically compared with a non-vertical angle. This section presents a series
of trials where the azimuth is repositioned by 90 degrees at different vertical angles. The
controller/prototype buoy configuration was able to provide good results up to vertical
angles of approximately 35 degrees.
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Figure 5.17: The composite payload error for various vertical angles. At 10 seconds the
payload is repositioned by 90 degrees in azimuth, while maintaining a constant vertical
angle. A degradation of performance begins to be evident at 35 degrees and becomes
significantly worse at 40 degrees.
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5.10 PID+FF Control Results

In simulation the PID+FF controller also performs well at controlling the prototype buoy
configuration. Figure 5.18 compares the composite payload error for a PID+FF control
(blue) and SMC+FF control (green). In terms of composite pointing error, both control
laws perform equivalently.

Next a trial was run with the J15 buoy configuration, the control loop running twice as
fast with half the system latency, and the correct feed forward gain, Kff . The other PID
and SMC gains used values tuned for the prototype buoy configuration. Figure 5.19 shows
the composite payload error for this trial.

In this trial the SMC+FF control law performs noticeably better than the PID+FF
control law. The PID+FF could have been retuned to give equivalent performance to
the SMC+FF controller. However, by not retuning it, the trial illustrates the SMC+FF’s
robustness to model variation compared with the PID+FF law.
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Figure 5.18: The composite payload error for the prototype buoy under PID+FF (blue)
and SMC+FF (green) control. We can see that the two techniques perform approximately
equally well.
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Figure 5.19: The composite payload error for the J15 buoy configuration under PID+FF
(blue) and SMC+FF (green) control. We can see that the SMC+FF controller performs
slightly better than the PID+FF controller. Only the feed forward gain value was changed
between this trial and previous prototype buoy configuration trial shown in Figure 5.18.
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5.11 Vertical Oscillation Results

It will be shown in the wave trial results, Sections 5.12 and 5.13, that the resonant frequency
of vertical oscillation is the dominant factor in determining the buoy’s performance.

Predicting the buoy’s resonant peak from (2.110) was shown to be accurate in Section
3.3 for the large and small test cylinders. For the prototype buoy configuration, with a mass
of 2.546 kg and a radius of 0.0395 meters, the resonant frequency is expected to be 4.34
rad/s (a period of 1.45 seconds). Performing a vertical drop test in simulation with the joint
locked, so the buoy mimics a rigid cylinder, gives a measured frequency of vertical oscillation
of 4.36 rad/s (a period of 1.44 seconds). This measure value was found by averaging the
period of the first 8 oscillations. This response is shown in the upper plot of Figure 5.20.

Therefore using (2.110) to estimate the resonant frequency of vertical oscillation is val-
idated for the prototype buoy configuration in simulation.
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Figure 5.20: Payload CM, housing CM, and joint height vs. time for the prototype buoy
configurations oscillating in the vertical direction. The c1 system (upper plot) shows the
response when the joint is locked at a vertical angle of zero. This causes the buoy to behave
most like a rigid cylinder. In the c2 system (lower plot), the payload is actively stabilized
about the vertical using the SMC+FF control law. We can see that actively stabilizing
the payload about the vertical does not change the period of vertical oscillation. Careful
measurement gives the average period of oscillation for the c1 system of 1.44 seconds.
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5.12 Regular Ocean Wave Effects

All the simulation trials discussed up to now have been on a calm sea, that is there were
no surface waves applied to the model. A sequence of trials was performed with different
surface waves to evaluate the buoy’s ability to reject wave induced disturbances.

For all these regular wave trials the following conditions apply.

1. The prototype buoy configuration starts in initial condition configuration 1, See Figure
5.13.

2. The SMC control law is used with the control loop running at 80 msec and a system
latency of 80 msec.

3. The payload is commanded to the vertical for the first 15 seconds of the simulation,
and then it is commanded to a vertical angle of 20 degrees and an azimuth angle of
150 degrees.

5.12.1 Regular Seas Trial 1

First the prototype buoy configuration was tested with regular seas being applied to it. One
regular sea has an amplitude of ±1.0 meters (6 foot 6 inch wave height) and a period of
5 seconds. The second regular sea has an amplitude of ±0.4 meters (2 foot 7 inch wave
height), and a period of 2 seconds. The smaller shorter wave was scaled such that the slope
of the water’s surface was the same for both waves. The wave elevation for both seas are
plotted in Figure 5.22.

Despite the smaller amplitude, the shorter period makes the buoy uncontrollable because
it is similar to the natural frequency of the buoy. This results in the buoy having a vertical
oscillation of almost exactly the same period as the wave train, except that the phase of
the buoy oscillation is nearly 180 degrees out of phase.

This causes poor performance in the buoy system for two reasons. (1) The buoy is
completely submerged for a significant amount of time. And (2) when buoy is at the top
of its oscillation, the payload comes completely out of the water. This is an unstable
configuration, and as a result the buoy falls over sideways.

It is very important to note that this poor performance has nothing to do
with the control law selected for the joint motion. It is entirely due to the
passive response of the structure to the disturbance.

This poor performance is clear from the composite payload pointing error plot shown
in Figure 5.21. The relationship between the buoy’s vertical position and sea surface is
illustrated in Figure 5.23. The payload coming completely out of the water is evident in
Figure 5.23, at the points where the joint is higher than the surface (i.e. the red curve is
above the purple and cyan curves). In all cases, shortly after the joint is out of the water,
Figure 5.23 shows the housing CM, payload CM, and joint all at the same height, indicating
that the buoy is on its side.

The c2 system’s performance is better when the payload is commanded about a vertical
angle (t < 15 sec) than when it is commanded to a non-vertical angle.
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c1: Reg Wave: A = 1.0 m, T = 5 sec.
c2: Reg Wave: A = 0.4 m, T = 2 sec.

Figure 5.21: The composite payload pointing error for regular seas trial 1. Both buoys
and controllers (SMC) are the same. The payload is commanded vertical for the first 15
seconds, then it is commanded to a vertical angle of 20 degrees and an azimuth angle of
150 degrees. The regular sea applied to system c1 (blue) has an amplitude of ±1 meter and
a period of 5 seconds. The regular sea applied to system c2 (green) has an amplitude of
±0.4 meters, and a period of 2 seconds. Despite the smaller amplitude, the shorter period
makes the buoy uncontrollable because it is similar to the natural frequency of the buoy.
The c2 system’s performance is better when the payload is commanded about a vertical
angle (t < 15 sec) than when it is commanded to a non-vertical angle.
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c1: Reg Wave: A = 1.0 m, T = 5 sec.
c2: Reg Wave: A = 0.4 m, T = 2 sec.

Figure 5.22: The wave elevations for regular seas trial 1 applied to each buoy. The smaller
shorter sea was scaled such that the slope of the water’s surface was the same for both seas.
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Figure 5.23: The buoy heights for the regular seas trial 1. The buoy has a vertical period
of oscillation of nearly 2 seconds which is almost exactly the same as wave period which is
applied to the c2 system. The plot of the c2 system clearly shows that the the phase of the
buoy oscillation is nearly 180 degrees out of phase with respect to the wave. This results
in the buoy being completely submerged for a significant amount of the time. Additionally,
when it is not fully submerged, the buoy rises to a height out of the water sufficient to
become unstable and fall over sideways.
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5.12.2 Regular Seas Trial 2

Given the extremely poor performance of the buoy when excited by a wave with a two
second period, this trial was to explore the maximum amplitude of a 2 second wave which
the buoy system could reject. The amplitude of the waves were adjusted until a pair of
waves were found such that one wave was rejected by the system and the slightly larger
wave was not well rejected. After several iterations we found that a 2 second wave with an
amplitude of ±0.05 meters (4 inch wave height) could be rejected by the system, while a
wave of ±0.075 meters (6 inch wave height) caused significant performance problems.

For the smaller wave the system performed well when stabilized about the vertical (as
was the case for the first 15 seconds of the simulation). The system performed marginally
when the payload was commanded to vertical angle of 20 degrees. This is shown by the
green curve in Figure 5.24. The commanded payload azimuth angle was 150 degrees and the
seas were traveling from 180 to 000 degrees. It is clear from the blue curve in Figure 5.24
that the system would perform poorly for a wave amplitude of ±0.075 meters regardless of
the commanded payload vertical angle. The wave elevation and buoy heights are plotted in
Figures 5.25 and 5.26 respectively.
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c1: Reg Wave: A = 0.075 m, T = 2 sec.
c2: Reg Wave: A = 0.050 m, T = 2 sec.

Figure 5.24: The composite payload pointing error for regular seas trial 2. Both buoys
and controllers (SMC) are the same. The payload is commanded vertical for the first 15
seconds, then it is commanded to a vertical angle of 20 degrees and an azimuth angle of 150
degrees. The regular sea applied to system c1 (blue) had an amplitude of ±0.075 meters.
The regular sea applied to system c2 (green) had an amplitude of ±0.05 meters. Both waves
have periods of 2 seconds. The c2 system maintained good pointing performance in these
seas when commanded to the vertical and did a marginal job when commanded to a vertical
angle of 20 degrees. The c1 system did a poor job regardless of the commanded payload
angle.
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c1: Reg Wave: A = 0.075 m, T = 2 sec.
c2: Reg Wave: A = 0.050 m, T = 2 sec.

Figure 5.25: The wave elevations for regular seas trial 2 applied to each buoy. Both waves
have a 2 second period.
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Figure 5.26: The buoy heights for the regular seas trial 2. The buoy has a vertical period
of oscillation of almost 2 seconds which is nearly the same as sea’s period.
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5.12.3 Regular Seas Trial 3

The first two regular wave trials clearly indicate that the prototype buoy structure has a
resonant peak at period of approximately 2 seconds. This prompted the third regular wave
trial to evaluate the width of this resonant peak.

Regular waves of different periods were applied to the prototype buoy configuration. The
amplitude of each of the waves was scaled to the be proportional to the wavelength such
that all the waves had an average slope of 4.5%. The average slope of a regular sinusoidal
wave was approximated by

M =
2A

0.5λ
=

4A

λ
. (5.1)

Where M is the slope, A is the amplitude of the wave, and λ is the wavelength. The
wavelength is found using the deep water dispersion relationship (A.2), simple wave height
equation (A.1), and ω = 2π/T . This results in an equation for wavelength of

λ =
gT 2

2π
, (5.2)

where g is the acceleration due to gravity and T is the wave period. This allows the wave
amplitude to be expressed as a function of wave period and average slope using

A =
MgT 2

8π
. (5.3)

The selection of 4.5% for the wave slope was somewhat arbitrary. It is a value that
is reasonable for ocean waves and it causes the buoy’s resonant peak to be well defined.
Figure 5.27 clearly shows that the waves with the periods of 1.7 and 2.0 seconds caused the
system to perform poorly, whereas the buoy performs noticeably better with the 1.0 and
2.3 second waves.

These results are very close to the predicted and measured resonant frequency of 4.3
rad/s (1.46 sec). It is a little surprising that the buoy performed as well as it did with the
1 second wave which is only 0.5 seconds off from the resonant peak, given how poorly it
did with the 2 second wave which is also 0.5 seconds off. This difference is likely because
the amplitude of this wave was so small (because of maintaining the 4.5% slope) that not
enough energy was being coupled into the buoy.
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Reg Wave: A = 0.0175 m, T = 1.0 sec.
Reg Wave: A = 0.051 m, T = 1.7 sec.
Reg Wave: A = 0.070 m, T = 2.0 sec.
Reg Wave: A = 0.093 m, T = 2.3 sec.

Figure 5.27: The composite payload pointing error for the system in the presences of various
regular waves. The amplitude of the four regular waves were scaled such that they all had
an average slope of 4.5%. The payload was initially commanded to the vertical and then
at 15 seconds was commanded to a vertical angle of 20 degrees. This plot clearly shows
the prototype configuration’s resonant peak from about 1.7 to 2.0 seconds. The buoy
performed satisfactory for a regular wave with a period of one second when the payload was
both vertical and 20 degrees away from the vertical. For the 2.3 second period wave, the
buoy performed well (11-15 seconds) with the payload commanded to the vertical and it
performed marginally when the payload was commanded to a vertical angle of 20 degrees.
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5.13 Irregular Ocean Wave Effects

The results of the regular wave trials, presented in Section 5.12, clearly indicate the presence
of a resonant peak for waves with a period of 1.7 to 2.3 seconds. This corresponds to a
circular frequency of 2.7 to 3.7 radians per second. When the disturbance frequency is
below this the system performs well. This leads to the following questions:

1. What are the fundamental structural characteristics which determine the magnitude
and location of the resonant peak?

The examination of the small wave tank tests prompted the derivation presented in
Section 2.9 to estimate the damped frequency of oscillation, ωd, of the buoy. When
comparing with the wave tank data, in Section 3.3 it was found that the damped
frequency of oscillation was very close to the natural frequency, which is determined
by the radius and mass of the buoy using

ωd ≈ ωn = 175.46
R√
m

= 87.73
D√
m
. (5.4)

2. Given the statistical nature of describing irregular ocean waves, is the buoy system
performance qualitatively similar for different irregular wave trains generated from
the same statistical parameters?

This was examined by running several trials where different irregular wave trains were
generated by the same Pierson-Moskowitz spectrum and applied to the buoy system.
Two of the trials are compared in Section 5.13.1 below.

3. Given, irregular seas in the open ocean, how much wave energy exists at frequencies
near the buoy’s resonant peak?

Assuming a Pierson-Moskowitz wave spectrum, the relative energy content can be
approximated by finding the fraction of the area under the Pierson-Moskowitz density
function within the frequency range of interest. Table 5.3 shows the percentage of the
total energy in a Pierson-Moskowitz wave spectrum that is above 3 rad/s. The wave
spectra was built up using 1000 component waves from 0.006 to 6 rad/s. A sea with a
0.5 meter significant wave height will have over 13% of its energy above 3 rad/s, while
sea with a 5 meter significant wave height will only have 0.14% of its energy above 3
rad/s.

Table 5.3: The energy fraction in the Pierson-Moskowitz wave spectrum greater than 3
rad/s for various significant wave heights, H1/3. The spectra were calculated from 0.006 to
6 rad/s.

H1/3 (m) Energy Fraction > 3 rad/s

0.5 13.41%
1.0 3.54%
2.0 0.90%
3.0 0.40%
5.0 0.14%
7.0 0.07%
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4. Are there any effects of the irregular waves at frequencies well below that the of
the resonant peak which contribute to poor buoy performance which would not be
predicted by the regular wave results?

This question was tested by comparing trials with two irregular wave trains. In one
wave train all spectral content above a cutoff frequency is suppressed. By comparing
these results we can see which effects are due to high the frequency content of the
waves. The irregular wave trails 2 and 3 perform this comparison.

As in the regular wave trials, in the irregular wave trials the only differences between
the trials were in the wave disturbances applied to the systems. For the irregular trials the
following conditions applied:

1. The prototype buoy configuration starts in initial condition configuration 1, see Figure
5.13.

2. The SMC control law is used with the control loop running at 80 msec and a system
latency of 80 msec.

3. The payload is commanded to the vertical for the first 45 seconds of the simulation,
and then it is commanded to a vertical angle of 20 degrees and an azimuth angle of
150 degrees.

5.13.1 Irregular Seas Trial 1

The irregular seas applied to both systems were generated from the same spectral distri-
bution for the Pierson-Moskowitz model with a significant height of 3 meters. The wave
spectra were only calculated up to a maximum frequency of 2 rad/s. Because this is a
stochastic description of the seas, the actual wave train applied to each system is different.
We can see that there is little qualitative difference between the two buoy’s response for
two different seas generated from the same spectral density function when the payload is
vertical.

The composite payload error for this trial is plotted in Figure 5.28. The irregular wave
forms for each wave are plotted in Figure 5.29. The height of the buoy bodies CM’s and
joint are plotted with the wave elevation in Figure 5.30.
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Figure 5.28: The composite payload pointing error for two trials in irregular seas. Both
buoys and controllers are the same. The irregular seas applied to both systems were gen-
erated from the spectral distribution for the Pierson-Moskowitz model with a significant
height of 3 meters. The wave spectra were only calculated up to a maximum frequency of
2 rad/s. Because this is a stochastic description of the seas, the actual wave train applied
to each system is different. We can see that there is no qualitative difference between the
c1 and c2 systems response when the payload is vertical. However, there the c2 system
happens to perform noticeably better than the c1 system when the payload is commanded
to a non-vertical angle.
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Figure 5.29: The wave elevations for the irregular seas applied to each buoy for irregular
wave trial 1.
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Figure 5.30: The buoy heights for the irregular seas trial 1.
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5.13.2 Irregular Seas Trial 2

This trial was run to compare the effects of spectral cutoff frequency. An irregular wave was
generated using the Pierson-Moskowitz spectrum with frequency component up to 6 rad/s
(periods as short at 1.04 seconds). This was was applied to system c1 (blue). For system c2
the same irregular wave was used except the component waves with frequencies greater than
1 rad/s (periods shorter than 6.28 seconds) where not included in the summation to build
up the irregular wave. In this manner, two waves were generate with identical frequency
content at less than 1 rad/s, while still allowing one wave to have frequency content greater
than 1 rad/s.

The composite payload pointing errors of the buoy system for the two wave are plotted
in Figure 5.31. Two things stand out in in this plot. (1) The buoy system does an excellent
job at rejecting both irregular wave trains when the payload is commanded to the vertical
position. And (2) when the payload is commanded to the non-vertical angle it is the high
frequency wave content that generates the abject failure of the pointing control.

The irregular wave forms for each wave are plotted in Figure 5.32. The height of the
buoy bodies CM’s and joint are plotted with the wave elevation in Figure 5.33.
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Figure 5.31: The composite payload pointing error for two trials in irregular seas. The
irregular seas applied to both systems were generated from the same spectral distribution
for the Pierson-Moskowitz model with a significant height of 2 meters. The spectrum used
for the c1 system was calculated up to a frequency of 6 rad/s. For the c2 system the
irregular wave was generated using the same component waves as the c1 system, except
that component waves with a frequency greater than 1 rad/s were suppressed.

116



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
-1.5

-1

-0.5

0

0.5

1

1.5

time (sec)

w
av

e 
el

ev
at

io
n 

(m
)

Wave Elevation vs Time at the Origin

 

 
c1: PM Wave: H

1/3
=2 m, 

max
=6 (rad/s) T

min
=1.04 sec.

c2: PM Wave: H
1/3

=2 m, 
max

=1 (rad/s) T
min

=6.28 sec.

Figure 5.32: The wave elevations for the irregular seas applied to each buoy in irregular seas
trial 2. The higher frequency content in the c1 wave train (blue curve) is clearly evident.
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Figure 5.33: The buoy heights for the irregular seas trial 2. The higher frequency content
in the c1 wave train (upper plot curve) is clearly evident.
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5.13.3 Irregular Seas Trial 3

This trial is basically the same as Irregular Seas Trial 2, except that:

1. The significant wave height used to generate spectral content of the waves is 5 meters.

2. The cutoff frequencies for the waves applied to the c1 and c2 systems are 3 rad/s
(periods of 2.09 seconds) and 1.5 rad/s (periods of 4.19 seconds), respectively.

As in the second irregular seas trial we see similar results. With the payload vertical
the system is relatively unaffected by the high frequency wave content, but as soon as the
payload is commanded to the vertical angle of 20 degrees the buoy has significant trouble
maintaining the payload pointing in the proper direction. The composite payload error
for this trial is plotted in Figure 5.34. The irregular wave forms for each wave are plotted
in Figure 5.35. The height of the buoy body CM’s and joint are plotted with the wave
elevation in Figure 5.36.
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Figure 5.34: The composite payload pointing error for two trials in irregular seas.
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Figure 5.35: The wave elevations for the irregular seas applied to each buoy in irregular
wave trial 3.
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Figure 5.36: The buoy heights for the irregular seas trial 3.
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5.14 Results Summary

This chapter presented a quantitative analysis of the prototype buoy configuration’s per-
formance under a variety of conditions.

For this particular configuration, on a calm surface, the following parameters all undergo
an abrupt transition from acceptable performance to unacceptable performance: control
rate, system latency, and maximum joint acceleration.

For the prototype configuration the passive yaw control fins only marginally improved
the system’s pointing performance and the active yaw damper feature did not improve the
system performance. This is in contrast to the J series buoy configurations where both
features noticeably improved the system performance. The use of these features needs to
be determined on a case by case basis.

Both the SMC+FF and the PID+FF control laws were shown to be effective at con-
trolling the system. When properly tuned both control laws performed equivalently well
in terms of pointing performance. The PID+FF control achieved the same performance
level with less joint motion than the SMC+FF control law. The SMC+FF control law was
shown to be more robust to parameter uncertainty than the PID+FF law.

The resonant response of the buoy was shown to be critical parameter for the overall
performance of the system in the presence of ocean waves. Due to the small size of the pro-
totype buoy configuration, the resonant frequency is above that which is typically reported
in the literature for the validity of the various standard spectral models for ocean surface
waves. The results presented here for the irregular wave trials were based on the assumption
that the Pierson-Moskowitz model for wave spectra is valid at frequencies greater than 1
rad/s.

The ability to accurately point and stabilize the payload deteriorated as the payload
was pointed further and further away from the vertical. In a calm sea the system could not
point further than about 30 degrees away from the vertical while maintaining the desired
composite payload pointing error performance threshold and objective of less than 10 and
5 degrees respectively. This is likely because the joint axes are limited to a range of motion
of ±45 degrees and that the feed forward gain is for the prototype configuration is greater
than one. Additionally, at these large joint angles structure is significantly asymmetric.
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Chapter 6

Other Design and Modeling Issues

6.1 Perfect vs. Imperfect State Information

A standing assumption throughout all of the simulations presented is that the controller
has access to perfect state information (limited only by numerical precision). Even when
modeling system latency, the state information was perfect at the time of measurement. So
the controller was running off of perfect but delayed state information.

This research is not about analyzing the performance of the navigation sensors or state
estimation. By providing the results based on perfect navigation information, these results
can be used as a baseline to estimate actual system performance. A designer wishing to use
these result could insert a model of their particular navigation sensor into the simulation
framework and then rerun the model.

Alternatively, the designer could use the simulation results to specify the maximum
permitted error budget for the rest of the system. This would be accomplished by taking the
difference between the required performance of the system and the performance predicted by
the simulation with perfect state information. This difference gives a performance margin
for the maximum allowed sensor and actuation error for static and dynamic sources in the
system. Additionally, this performance margin can be compared under different simulation
conditions to understand how it varies across the envelope of conditions the system could
encounter.

6.2 System CM Location

One of the factors that seems to contribute to the robust performance of the prototype
configuration, with either the SMC+FF or PID+FF controller, is that its system CM is
located almost exactly at the joint location. The alternate buoy configuration J10 (Buoy-
GroupSonoA 5x36 J10) also has a system CM very close to its joint.

We hypothesize that this improves the system response because the joint is actuating
about the point that the system “wants” to rotate about. Having the CM at a significantly
different location from the joint location induces more translational effects when the joint
is moved. This is more disruptive to the overall system performance.
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6.3 El. Over Az. Joint vs. a Universal Joint Configuration

In the early stages of this research, the joint was modeled as an “elevation over azimuth”
(ELAZ) joint, as this is the type of joint configuration found on many terrestrial, airborne,
and maritime antenna and camera pointing systems. As the system model and control laws
were developed it soon became apparent that the ELAZ mechanism was not the best joint
implementation for this application. The universal (or Hooke) joint was found to be far
superior.

Figure 6.1: Side by side sketches of an elevation over azimuth joint implementation (left)
and a universal joint implementation (right).

In this application the universal joint has a number of advantages over the ELAZ joint
including:

1. In the universal joint, both joint axes can be mechanically identical and therefore
cheaper to manufacture.

2. For the universal joint, continuous rotation in azimuth is possible without the use of
electrical slip-rings. This results in a significant cost and weight savings for the design.

3. Because electrical slip-rings are not required, a much wider variety of cables can
connect the housing and payload including: fully shielded electrical lines, co-axial
cables, ribbon cables, fiber optic cables, and tubing (pneumatic or fluid).

4. When using a universal joint, the system dynamics are almost identical for both joint
axes. This allows for the same control law to be used for both joint axes.

5. A universal joint implementation allows for disturbances in pitch and roll to be imme-
diately and simultaneously compensated for by the joint. The ELAZ joint might be
able to immediately compensate for motion in pitch and yaw, however this is inferior
for two reasons:
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(a) Because of the symmetry of the buoy system it is equally susceptible to distur-
bances about both its roll and pitch axes. In contrast to something like a ship
which is much less susceptible to pitch disturbances. If the buoy uses an ELAZ
joint while it is stabilizing the payload vertically, and a disturbance is applied
which is perpendicular to the joint’s elevation axis, the joint will have to rotate
in yaw to bring the elevation axis parallel to the axis of the disturbance (in the
navigation frame) before the disturbance can begin to be rejected. Since distur-
bances can come from many directions simultaneously, the instantaneous axis of
rotation due to the disturbances can shift very quickly from any direction to any
other direction. This will likely result in system chasing the disturbance axis of
rotation with the elevation axis. This is made more difficult because the system
has the least control authority in yaw, which is the second problem.

(b) The system’s control authority in yaw is potentially much less than in either roll
or pitch. This is because the yaw motion of the payload is only dependent on
the inertia and drag moments in the system. In contrast, shifting the payload in
pitch or roll provides a restoring moment due to buoyancy that the dependent
on payload position. Because the buoyant moments are functions of payload
position, they do not require continuous joint acceleration or velocity to generate
them.

6. With a universal joint, azimuth control is not simply dependent on a cylinder’s accel-
eration (inertia) and velocity (drag) about its long axis (see item 5b above). Rather,
by appropriate mixing of the roll and pitch joint axes, buoyant moments can be used
to move the payload to a new yaw position.

7. For a universal joint the azimuth control does not have to fight the “falling down hill”
response to an angular disturbance perpendicular to the current pointing angle.

However, the universal joint does have two peculiarities which can limit its performance
in certain applications. These are:

1. As the the universal joint moves the payload in azimuth with respect to the housing,
the payload will undergo a complete revolution about its long axis for each revolution
in azimuth.

2. Due to mechanical interference in the joint mechanism, universal joints are typically
limited to about 45 degrees of misalignment between the sides of the joint. This is
the maximum joint vertical angle in the prototype buoy configuration for all joint
azimuth angles. There are four sectors where there the joint can achieve a greater
vertical angle of φvmax = arccos

�
cos2 φaxismax

�
.

But both of these issues can be overcome with relatively simple means. The payload
rotating about its long axis is not an issue for antenna systems that are circularly polarized,
which is a common polarization for satellite and aircraft communication systems. For
imaging systems an image transform can be applied to the image to correct for the roll
angle.

Even if the joint is limited to a maximum angle of 45 degrees, the payload can be made
to point further away from the vertical by adjusting the weight distribution in the buoy
such that a given joint angle results in a larger payload moment away from vertical. This
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is possible when the mass distribution is such that the feed forward gain value is less than
one.

6.4 Joint Motion in SMC vs. PID Control

For the prototype buoy configuration both the SMC+FF and PID+FF controller were able
to produce equivalently good payload pointing performance. However, there are differences
in how they achieve this. When the payload reaches steady state with the PID+FF control,
the amplitude of the joint oscillations almost immediately achieve their minimum value of
about 3 degrees. In contrast to this, the SMC+FF control stabilized the payload with an
initially larger amplitude of oscillations but ultimately ends up with the joint nearly at rest.
Figure 6.2 compares the joint vertical angle history between the SMC+FF and PID+FF
controllers for a trial. PID+FF control law results in significantly less joint oscillation when
stabilizing the system. However, the SMC+FF law ultimately results in less joint motion.
Also it is expected that the SMC+FF control law will have better disturbance rejection
than the PID+FF control law.
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Figure 6.2: The joint vertical angle vs. time for the prototype buoy configuration released
from initial condition set 1. The payload was immediately commanded to a payload vertical
angle of 30 degrees. At 10 seconds the payload azimuth angle was shifted by 90 degrees.
PID+FF control law results in significantly less joint oscillation when stabilizing the system.
However, the SMC+FF law ultimately results in less joint motion. Also it is expected that
the SMC+FF control law will have better disturbance rejection that then PID+FF control
law.
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6.5 Hydrodynamic (Added) Mass Effects

Hydrodynamic (added) mass effects are not explicitly included in the model derivation
presented in Chapter 2 and added mass effects were not included any of the numerical
simulations.

White in [32, p. 488] provides the following introduction to hydrodynamic mass:

When a body moves through a fluid, it must push a finite amount of fluid
out of the way. If the body is accelerated, the surrounding fluid must also be
accelerated. The body behaves as if it were heavier by an amount called the
hydrodynamic mass (or added mass) of the fluid. . . . [The] hydrodynamic mass
is a function of body shape, the direction of motion, and (to a lesser extent)
flow parameters such as the Reynolds number.

Fossen in [9, Sec. 2.4.1] provides a more complete and cautionary introduction to hy-
drodynamic mass of:

The concept of added mass is usually misunderstood to be a finite amount
of water connected to the vehicle such that the vehicle and the fluid represent
a new system with mass larger than the original system. This is not [emphasis
in the original] true since the vehicle motion will force the fluid to oscillate with
different fluid particle amplitudes in phase with the forced harmonic motion of
the vehicle. . . . Added (virtual) mass should be understood as pressure-induced
forces and moments due to a forced harmonic motion of the body which are
proportional to the acceleration of the body. Consequently, the added mass
forces and acceleration will be 180 degrees out of phase to the forced harmonic
motion.

To include the added mass effects, the model has to be adjusted to incorporate the
added mass terms and the added mass terms themselves need to be calculated as functions
of the system states.

6.5.1 Adjusting the Dynamics Model

Adjusting the dynamics model derived in Chapter 2 to include added mass effects requires
making the following approximations:

1. The added mass terms for the current time step are calculated based on the state
information from the previous time step.

2. The location of the bodies’ and system’s CM in body coordinates, as calculated by
(2.27) and (2.28), do not include the effects of added mass.

Note that “added mass terms” can be elements with units of mass (i.e. kg) or inertia (i.e.
kgm2) depending on whether they are influencing the translational or rotational dynamics.

The above quotation by White suggests the typical method used to implement added
mass effects, i.e. the mass of the object is increased.

Consider the translational dynamics first. The mass in the translational acceleration
equation, (2.44), is a scalar term. So simply increasing it would apply the same added mass
effect in all directions of motion. This is problematic because added mass is a function of
direction of motion and body shape. This requires that the mass term can no longer be a
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scalar, but must be a tensor. Defining a mass tensor which includes both the body’s mass
and the directionally dependent added mass terms gives

mi =

264mi +m′ixx 0 0
0 mi +m′iyy 0

0 0 mi +m′izz

375 . (6.1)

Here we designate the added mass terms as m′ijj where i = 1 for the housing, i = 2 for the
payload, and j = x, y, z specifies the direction which the added mass term is valid for. In
general, the mass tensor’s off diagonal terms may be non-zero as well [9, Remark 2, p. 35].

Once the mass tensor for each body is known, the scalar mass terms, m1 and m2, in
(2.44) can be replaced by their mass tensors and the calculation proceeds as before.

Similarly, for the rotational dynamics an added mass inertia tensor can be defined for
each body as

J′i =

264J ′ixx 0 0
0 J ′iyy 0

0 0 J ′izz

375 , (6.2)

where the terms J ′ijj are the inertia values about the various axes. In general, the added
mass inertia tensor will not be diagonal. However, for a submerged body with 3 planes of
symmetry it is [9, (2.129)].

This added mass inertia tensor is added to the inertia tensors Jh and Jp in (2.31) and
(2.33). Also, the scalar mass values in (2.31) and (2.33) should be replaced by the mass
tensor calculated in (6.1) to include the translational added mass effects in the rotational
dynamics.

A simulation framework based around a solution of constraint equations would handle
the added mass effects on each body in a much more elegant manner and not require the
assumption about body CM locations being independent of added mass. See Appendix D
a discussion about solving multi-body systems using constraint equations.

6.5.2 Calculating the Added Mass Terms

The added mass of a submerged cylinder for translation perpendicular to its axis of revolu-
tion, m′ixx and m′iyy , is equal to its displaced mass [32, (8.104)]. For motion parallel to its
axis of revolution, m′izz , the added mass can be approximated by the mass of a sphere of
water with the same diameter as the cylinder1.

A common method of finding the added mass terms for three dimensional bodies is to
use strip theory. The three dimensional object is divided into two dimensional slices, or
strips, along an axis. Typically this axis is the longitudinal axis of symmetry. Tabulated
added mass values are available for various 2-D shapes. The total added mass for the 3-
D object is found by summing the added mass values for each 2-D slice. The tabulated
values for the 2-D slides are only for motion in the plane of the slice. This means that
finding the added mass for a 3-D object using strip theory will only provide the added mass
terms for translation perpendicular to, and rotation about, the axis normal to the slices. An
illustration of this is shown in Figure 6.3.

The added mass terms for various 2-D shapes are presented in Table 6.1 and is based
on [9, Table 2.2]2 and [19, Table 4.3].

1This can be shown by treating the end of the buoy as a flat plate and using strip theory.
2Table 2.2 in [9] has an error in the J ′

zz for the square slice. Additionally, it states that the J ′
zz for the

cylinder with fins is unknown. Newman in [19] has correct values for both.
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Both Faltinsen [8] and Fossen [9] discuss the frequency dependence of the added mass
terms, which is not considered here.

Z

X

Y

L3

L1

L2

Figure 6.3: When using strip theory to calculate the added mass for a 3-D object, the 3-D
object is divided into a series of 2-D slices, or strips, along an axis. The overall 3-D added
mass terms are found by summing the added mass terms for each 2-D slice. This technique
only provides the added mass terms for motion perpendicular to and about the axis. In
this example the shape is divided into 3 slices along its Z axis. Added mass terms for each
section can be found by the product of the slice’s length and the appropriate entry from
Table 6.1.

6.5.3 The Effects of Added Mass On the Buoy System

Hydrodynamic mass could affect our buoy system in several ways. For each of these ways,
it can be argued that including the added mass in the model will have minimal effect on
the system or make the system easier to control.

1. The added mass could lower the resonant frequency of vertical oscillation for the buoy.
This may make the buoy more difficult to control because there is more wave energy
at lower frequencies.

Assuming that the added mass due to the buoy’s vertical translation is the mass of
water displaced by a sphere with the same radius as the buoy, the mass increase of the
prototype buoy configuration is 0.258 kg (10.1%) and the mass increase of the large
test cylinder is 2.22 kg (12.3%).

Without added mass effects, the predicted and measured period of oscillation for the
large test cylinder agreed within 1.1% (see Section 3.3). If the added mass of 2.23 kg
was included in the estimate for the period of oscillation (2.110), the estimated period
of the large test cylinder would be in error by 7.0%.

Similarly, in the numerical simulations, the “measured” period of oscillation matched
the predicted period of oscillation from Section 5.11 within 1%. However, including
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Table 6.1: Added mass terms for various 2-D shapes from [9, Table 2.2] and [19, Table 4.3].
All values are per unit length in the z direction.
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the added mass in an estimate of the prototype buoy’s period of oscillation would
cause the estimate and simulated performance to disagree by 4.8%.

For both cases, the added mass effects do not seem to be significant with respect to
the vertical oscillation of the buoy. So neglecting them with respect to this the vertical
oscillation of the buoy seems reasonable.

2. The added mass could slow the horizontal translation of the buoy system. In our
application we are not particularly concerned with the horizontal translation of the
system, so this effect is likely to not be a concern.

3. The added mass due to the passive yaw fins could add significant inertia to the hous-
ing about its long axis due to their radial distance from the z axis. However, this
increased inertia should give the system a more stable “base” and therefore more con-
trol authority in yaw. This should make the system easier to control. So neglecting
added mass here may make our results more conservative.

4. The added mass about the roll and pitch axes of the payload and housing might be
approximately equal if the submerged volumes of the housing and payload are similar
in magnitude. The overall effect of this will likely be to just require more actuator
torque to move the housing with respect to the payload.
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Chapter 7

Conclusions & Future Work

7.1 Conclusion

In Chapter 2 we developed a dynamic and kinematic model for a jointed two body cylindrical
buoy floating on the surface of the water. The only forces and moments applied to the
buoy were those of buoyancy, gravity, and drag. Using an actuated universal joint as
the actuator between the buoy bodies was found to have a number of advantages. The
modeling of the drag forces and moments required making significant approximations. These
approximations were informed and validated by a series of experiments which were presented
in Chapter 3.

The model developed here included the effects of surface waves at a scale appropriate
to the small size of the buoys envisioned. The model did not use approximations which are
common (and appropriate) for modeling the interactions between waves and large ocean
structures. Additionally, this model avoided the assumption that the payload’s mass and
inertia are negligible compared with the overall mass and inertia of the buoy.

By building up a validated non-linear model in numerical simulation, both sliding mode
and PID control strategies were investigated and presented in Chapter 4. The numerical
simulation also allowed an investigation of the passive characteristics of the structure in
addition to the active characteristics of the controller.

The simulation results indicate that it should be possible, depending on sea state, to
mechanically point a payload within about 5 degrees of an arbitrary point in the sky from
a small cylindrical buoy that is articulated near the middle. The universal joint is the
preferred mechanical implementation of the joint connecting the two sections of the buoy.
This joint allows for immediate control authority about the buoy’s pitch and roll axes.
Additionally, by taking advantage of the joint’s kinematic properties it is possible to exert
significant yaw control when the payload and housing are not co-linear.

When the payload is stabilized about the vertical, the system is significantly more ro-
bust against the effects of external disturbances (including disturbances at its resonant
frequency), initial conditions, system latency, control loop speed, and gain settings. Appli-
cations which only require a vertical payload can benefit significantly from this work.

For the buoy configurations tested in simulation, the payload can be stabilized up to
about 35 degrees away from the vertical, with accuracy and disturbance rejection perfor-
mance getting worse the farther the payload is away from the vertical.

Both a sliding mode control law with feed forward (SMC+FF) and a proportional in-
tegral and derivative control law with feed forward (PID+FF) seem to be able to control
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the payload well. The feed forward term is an important part of the control law as it is
responsible for the coarse positioning of the payload. This coarse positioning allows the
SMC or PID elements of the control law to handle the only disturbance rejection needs of
the system. The feed forward gain value is a plant specific piece of information, i.e. its
value can be found by calculation rather than tuning.

This buoy system has significant coupling among the three rotational axes. Fundamen-
tally, a control law for the buoy system can either: (a) try to model and predict the coupling
between the axes and control both axes in a coordinated manner, or (b) treat each axis as
independent and the coupling from the other axis as an external disturbance to be rejected.
The latter approach is the one that was selected here because it results in a simpler control
law and requires fewer assumptions about the plant model.

The passive yaw fins provided a slight improvement for the prototype buoy configuration
considered, and the active yaw damper provided no benefit to the prototype buoy config-
uration. However, with different buoy configurations the active yaw damper was observed
to provide a significant benefit.

The SMC+FF control law was fairly tolerant of system latency effects. There was
not significance performance degradation until the total system latency was in excess of
120 milliseconds. In the simulations the system’s performance was relatively insensitive
to control rate down to control rates as slow as 5 Hz. If one makes the assumption that
resonant frequency of the system is the time scale for the mechanical dynamics, then a 5
Hz control rate corresponds to a control rate that is 10 times faster than the mechanical
dynamics. This seems like a reasonable thumb rule for the minimum control rate that
should be considered.

Related to the control rate and system latency effects are the effects of actuator ac-
celeration. The acceleration is proportional to the amount of torque or electrical current
required of the actuator. As with the system latency and control rate effects, there was
a relatively sharp transition between the system providing equally acceptable performance
above a certain actuator acceleration threshold, and poor performance below it.

Actuator chatter, which is always a concern with sliding mode control, was reduced
using three methods:

1. Implementing a linearized saturation function to create a small boundary layer about
the sliding surface.

2. The presence of the feed forward term in the control laws.

3. The low level actuator controller (i.e. the hardware controller) acts a low pass filter
to smooth the rapidly changing commanded position values resulting from the control
law.

The experiments performed to validate the numerical model indicate that:

1. It is reasonable to model the translational drag forces as being linearly dependent
on velocity and the rotational drag moments as being quadratically dependent on
velocity.

2. Significant coupling between axes can be introduced by having the center of mass only
slightly off the central longitudinal axis of the buoy.
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3. A cylindrical buoy has a narrow but strong resonant peak for vertical oscillation. The
frequency of this resonant peak can be accurately predicted from its radius and mass.

The buoy system’s simulated performance in regular and irregular seas was mixed. If
there was significant wave energy with a period of approximately 2.0 seconds, the buoy
was uncontrollable. This was not a function of the control law, but rather of the passive
characteristics of the buoy’s structure. Here again, keeping the payload closer to the vertical
significantly improved the system’s performance.

7.2 Future Work

The most obvious next step is to build the prototype buoy and experimentally test the
proposed SMC+FF and PID+FF control laws, first in a wave tank, and then at sea. In-
deed, the prototype buoy configuration was designed for such a program, and a complete
mechanical (and electrical) design exists. The major unknown is the actual effect that sea
state will have on the payload pointing performance. The small and large wave tank tests
conducted on the large test cylinder at the United States Naval Academy Hydrodynamics
Laboratory suggested that small buoys would not be much affected by large long period
swells, but they would be affected by short-period disturbances. The small structures en-
visioned for this work are highly susceptible to the high frequency, ω > 2rad/s, spectral
content of the ocean waves. This spectral content is not well characterized by common
models presented in the literature. Therefore a program to characterize this high frequency
content would be beneficial in tuning these structures for the best possible passive response.
The results of this proposed experimental testing could then be incorporated into further
design iterations, as well as improvements to the simulation model.

A different direction for future work involves the form of the buoy system itself. One
of the lessons of a practical mechanical system controller design, as in our two-body buoy
problem, is the essential coupling between mechanical design and controller design. Al-
though we imposed certain constraints on the two-body buoy system in order to bound the
problem, the original payload pointing problem did not require these constraints. Therefore,
one could consider alternative structures and configurations to generate a stable platform
for pointing a sensor from. These alternative configurations might include the use of pas-
sive structures or inflatable/unfolding structures. These structures could be deflated/folded
up for their storage and launch, and then inflate/unfold to provide better passive stability
while in operation. In particular the size and placement of fins on the buoy to provide good
passive damping while improving the control authority due to the drag and inertial effects
could benefit significantly from optimization.

In addition, alternative actuation schemes could be considered. Although we focused
only on actuation of a universal joint, one could instead consider a pair of thrusters on
the bottom of the buoy, some flapping fins, or a flexible structure actuated by tendon-like
cables.

Naturally, any choice of morphology and actuation will have consequences for feedback
control. In fact, as mechanical fabrication and actuator technology improve, for a growing
class of applications (of which our buoy payload pointing application is just one example)
the feedback controller is what will consume most of the design effort. Therefore, viewing
the mechanical and controller design problems on an equal footing (rather than fixing a
particular mechanical configuration and then designing a controller for it) is quite sensible.
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One of the key features from the controller standpoint of our two-body buoy system was
the decomposition of a coupled control problem (for the two universal joint axes) into a pair
of decoupled problems, in which cross-coupling between axes was treated as a disturbance
(and suppressed by an appropriately designed sliding mode controller on each axis). This
is a natural idea which should generalize to other types of mechanical systems possessing
multiple actuated degrees of freedom with some level of coupling among them. Of course, as
the cautionary example in Appendix ?? illustrates, an essential part of the controller design
involves performing the requisite analysis to ensure that the model error and disturbance
rejection property holds.
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Appendix A

Modeling Ocean Waves

This section presents a much abbreviated presentation of mechanisms for describing ocean
waves. Faltinsen [8, Ch. 2] and Fossen [9, Ch. 2] are the primary references used. By
assuming that sea water is incompressible and inviscid, the fluid motion is irrotational, and
the ocean has a flat bottom and a free surface of infinite horizontal extent, a linear wave
theory (sometimes called Airy Theory) can be developed [8, pp. 13-17]. Linear wave theory
allows for straightforward description of ocean waves. Here we will only use a first order
model. This is consistent with much of the work in the literature. The first order model
captures the oscillatory nature of the problem. Higher order models are also presented in
the literature [9, (3.14)]. However, the second order terms in these models represent the
wave drift forces [9, Sec. 3.2] which are less relevant to our buoy stabilization and tracking
problem.

A.1 Regular Waves

A.1.1 The Wave Elevation

One of the simplest descriptions of an ocean wave is that of the regular sinusoidal wave,
propagating in a single direction, in “infinite” water depth, according to linear wave theory.
The wave is fully described by its amplitude, A, its circular frequency, ω, and its wave
number, k. Faltinsen in [8, Table 2.1] summarizes the various properties of regular waves
for finite and infinite water depth.

Faltinsen gives the wave elevation (wave profile) as

ζ(χ, t) = A sin (ωt− kχ) , (A.1)

where χ is the distance in the direction of the wave’s propagation, and ζ is the height of
the water’s surface with respect to its mean height.

The dispersion relationship relates the wave number, k, and circular frequency, ω. For
“infinite” water depth this relationship is given in [9] and [8, (2.18)] as

k = ω2/g. (A.2)

If the waves are propagating across a two dimensional plane, the distance in the direction
of propagation can be calculated from

χ = x cosβ + y sinβ, (A.3)
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where x and y are the horizontal coordinates in the plane, and β is the direction of wave
propagation (direction of seas) referenced to the plane’s x axis. This relationship is illus-
trated in Figure A.1.

x

y

Figure A.1: The seas are propagating in the direction β. To find the distance in the direction
of propagation, χ, for point in the x-y plane, one performs the coordinate transformation
of rotating the coordinate system through angle β about the z-axis.

This results in an equation for the wave elevation of

ζ(x, y, t) = A sin [ωt− k(x cosβ + y sinβ)] . (A.4)

A.1.2 Fluid Velocity Due to Wave Action

Fluid particles near the water’s surface will undergo an oscillatory motion in the vertical and
horizontal directions due to the wave action. Faltinsen [8, Table 2.1] states the equations
for the velocity and acceleration of the fluid particles due to the wave action as:

vχ = ωAekz sin (ωt− kχ) , vz = ωAekz cos (ωt− kχ) , (A.5)

aχ = ω2Aekz cos (ωt− kχ) , az = −ω2Aekz sin (ωt− kχ) , (A.6)

where vχ and aχ are the velocity and acceleration in the direction of propagation, and vz
and az are the velocity and acceleration in the vertical direction. z is the distance from
the mean surface height (z = 0), positive upwards, in the navigation frame. A qualitative
presentation of the phase relationships between (A.1), (A.5), and (A.6) is depicted in Figure
A.2.

It is worth noting the depth dependence in (A.5) and (A.6). When z = ζ(χ, t), (A.5) and
(A.6) give the velocity and acceleration of the fluid particles at the surface. Additionally,
because of the exponential term in (A.5) and (A.6), particles that are significantly below
the mean height of the surface, z � 0, will have negligible velocity and acceleration. This
is expected, because far away from the surface, wave action has no effect on the fluid.

If the waves are propagating across a 2-D plane, the fluid velocity at a point can be
found by substituting (A.3) into (A.5). Additionally, since the horizontal fluid velocity in
(A.5) specifies the fluid velocity in the direction of propagation, it is desirable to convert
the velocity vector into the navigation frame’s x and y directions. With these points in
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mind, we can express the velocity of the fluid particles due to wave action in the navigation
frame’s coordinate system as:

vfluid(x, y, z, t) = ωAkze

264sin [ωt− k(x cosβ + y sinβ)] cosβ
sin [ωt− k(x cosβ + y sinβ)] sinβ

cos [ωt− k(x cosβ + y sinβ)]

375 . (A.7)

A fluid particle driven by the velocity specified by (A.7) will oscillate in both the horizontal
and vertical directions. Its net motion will be in the direction of wave propagation as shown
by [8, Figure 2.4]. The trajectory of a fluid particle on the water’s surface in the presence
of a 5 meter wave is illustrated in Figure A.3.

0

W
av

e
E

le
va

tio
n 


0

H
or

iz
on

ta
l

V
el

oc
ity

0

V
er

tic
al

V
el

oc
ity

0

H
or

iz
on

ta
l

A
cc

el
er

at
io

n

wavelength / 2

0

V
er

tic
le

A
cc

el
er

at
io

n.

Direction of Wave Propagation, 

Figure A.2: A graphical depiction of the relationship between wave height, fluid parti-
cle’s velocity, and the fluid particle’s acceleration in the horizontal and vertical directions
according to linear theory [8, Figure 2.1].
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Figure A.3: The trajectory of a fluid particle on the water’s surface in the presence of a 5
meter wave. The wave has a period of 10 seconds. In the figure, the particle is traveling
from left to right and 60 seconds worth of the trajectory is shown. This figure is similar
to [8, Figure 2.4].
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A.2 Irregular Waves

Actual waves in the ocean are more accurately described by an “irregular” wave model. In
this irregular wave model, the wave is represented as a sum of component waves. These
component waves have different amplitudes and frequencies, which when combined give the
resulting irregular wave a spectral content which is similar to the region of ocean and wind
conditions desired in the model.

A.2.1 Wave Elevation in Irregular Seas

The spectral content of the surface waves will have a significant effect on the buoy’s effec-
tiveness. It is desirable to have large, long period, non-breaking waves as these will impart
the least amount of angular disturbances to the buoy system. Standard models for wind
generated waves in the open ocean are presented in [9] and [8].

Using (A.4) to describe each of the component waves, we can describe an irregular wave
by

ζ(x, y, t) =
NX
j=1

Aj sin[ωit− kj (x cosβ + y sinβ) + φj ]. (A.8)

Here ζ(x, y, t) is the wave elevation as a function of position and time. N is the total number
of component waves. Aj , ωj , and kj are the amplitude, circular frequency and wave number,
respectively, for each of the component waves. φj is a random and constant phase angle
uniformly distributed between 0 and 2π for each component wave. x, y, and β are the same
as in (A.4).

The amplitude for each of the component waves, Aj , is a function of the particular
spectral distribution function, S(ωj), used to provide the statistical description of the sea
state. Aj is calculated from

Aj =
È

2S(wj)∆ω, (A.9)

where ∆ω is the constant difference between successive frequencies of each component wave
in the summation.

Once a suitable spectral distribution function has been selected, the component waves
can be calculating using the following procedure.

A.2.2 Procedure for Calculating Wave Elevation

Fossen [9, pp. 61] states a that large number of component waves may be needed, N ≈ 1000,
to accurately model the wave spectrum. Alternatively, he suggests that far fewer component
waves can be used if the the frequency of each component wave is chosen at random within
its frequency interval ∆ω.

The procedure for calculating the wave elevation as a function of time is [9, Algorithm
3.1]:

1. Divide the spectral distribution function, S(w), into N intervals with width ∆ω.

2. Pick a random frequency, ωj , in each frequency interval and compute S(ωj).

3. Compute the wave amplitude, Aj , and the wave number, kj , from (A.9) and (A.2)
respectively.

4. Pick a random phase angle uniformly distributed on [0, 2π) for each component wave.
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5. Compute ζ(x, y, t) from (A.8).

A.2.3 Fluid Velocity in Irregular Seas

The fluid velocity in irregular seas is simply the sum of the velocities due to the component
waves described by (A.4) in a form similar to (A.7). This results in a fluid velocity vector
in the navigation frame of

vfluid(x, y, z, t) =
NX
j=1

ωjAje
kjz

264sin [ωjt− kj(x cosβ + y sinβ) + φj ] cosβ
sin [ωjt− kj(x cosβ + y sinβ) + φj ] sinβ

cos [ωjt− kj(x cosβ + y sinβ) + φj ]

375 . (A.10)

A.3 Pierson-Moskowitz Spectral Distribution

The literature suggests a variety of spectral density functions depending on location in the
world and weather conditions. One such distribution is the Pierson-Moskowitz spectrum [9,
(3.2)] given by

S(ω) =
0.0081g2

ω5
exp

 
− 3.11

ω4H2
1/3

!
. (A.11)

Where H1/3 is the significant wave height in meters, g is the acceleration due to gravity in
m/s2, and ω is the wave’s circular frequency in rad/s. H1/3 is calculated as the mean of
the one-third highest waves. Plots of this spectrum for several significant wave heights are
shown in Figures A.4 and A.5.

Fossen [9, (3.24] suggests a relationship between wind speed and significant wave height
of

H1/3 = 0.21
V 2

g
, (A.12)

where V is the wind speed at a height of 19.4 meters above the surface.
The Pierson-Moskowitz spectrum is one of the more generic spectral density functions

as it assumes a fully developed sea, with unlimited fetch1, and “infinite” water depth.
Faltinsen and Fossen present other spectral distributions in [8] and [9] which are specific to
particular regions of the world or have larger number of parameters required to specify the
distribution.

1Fetch is the distance of open water that the wind is blowing over. Unlimited fetch means the wind has
enough distance to generate fully developed waves.
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Figure A.4: The Pierson-Moskowitz spectral distribution for significant wave heights of 1,
2, 3, 5, and 7 meters. For these larger waves there is a very low percentage of energy with
a period of 3 seconds or less.
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Figure A.5: The Pierson-Moskowitz spectral distribution for significant wave heights of 0.25,
0.5, 1, and 1.5 meters. Even at these much smaller wave heights, the Pierson-Moskowitz
distribution predicts minimal energy with a period of 2 seconds or less.
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Appendix B

Additional Buoy Models

After extensive testing it has become clear that the geometry of the buoy plays a critical
roll in the success or failure of the active stabilization and pointing of the payload. There
are a very large number of possible buoy configurations which meet the basic description of
a cylindrical housing and payload connected by a universal joint. Parameters which can be
varied within this description include:

1. Housing diameter and length

2. Housing mass and mass distribution

3. Payload diameter and length

4. Payload mass and mass distribution

5. Joint location with respect to the end of each body

Given that we already need to search across a large field of controller parameters (gain
values, control rates, joint velocities, etc.), allowing all of the above listed parameters to
vary makes the search several orders of magnitude longer and more difficult.

An approach to reducing the search space is to specify the buoy’s size and weight
based on “non-control” considerations. Practically, the size of the buoy is determined by
the launch mechanism. A reasonable starting point for this work is a buoy the size of a
US/NATO sonobuoy (size A): 36” long, 4.875” diameter [12, p. 644]. Once the overall buoy
volume has been determined, a mass distribution must be specified. Assuming that most
of the buoy contents will be specified by parties other than the controls engineer, and that
denser items will be placed in the bottom to provide a passive righting moment, a notional
mass distribution can be specified throughout the buoy volume.

Given this information, the controls engineer might be left to select where in the buoy
the joint is located. In this work a heavy and a light region for the buoy are defined. The
joint location is independent of the heavy and light regions. Several possible configurations
are show in Figure B.1.

For the J series buoys1, the configurations and parameters are listed in Tables B.1 and
B.2.

1The “J” is a reference to the fact that the only difference between the buoys is the location of the Joint.
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Figure B.1: Four joint locations with respect to the buoy’s heavy and light regions. (a) The
joint is located at the boundary between the regions. (b) The joint is located in the heavy
region. (c) The joint is located in the middle of the buoy. (d) the joint is located such that
the payload is small. The joint gap is sized to allow the housing and payload to rotate up
to 90 degrees with respect to each other.

Table B.1: The buoy parameters used by all configurations in the J series buoys. The joint
gap is the distance between the housing and payload cylinders occupied by the joint. The
pivot point of the joint is in the middle of the gap. For the purpose of the model, the joint
gap does not contribute to the displacement or mass of the buoy.

Equilibrium Submerged Fraction 85%
Diameter 4.875 in

Heavy Region Mass 12.00 lbs
Heavy Region Length 12.00 in

Light Region Mass 6.59 lbs
Light Region Length 20.5 in

Joint Gap 3.5 in
Overall Length 36 in

Total Mass 18.59 lbs
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Table B.2: The J series buoy configurations. The only difference between these configura-
tions is the location of the joint.

Configuration Housing Length Payload Length

BuoyGroupSonoA 5x36 J10 10in 22.5 in
BuoyGroupSonoA 5x36 J15 15in 17.5 in
BuoyGroupSonoA 5x36 J20 20in 12.5 in
BuoyGroupSonoA 5x36 J25 25in 7.5 in

Table B.3: The overall center of mass locations for each of the J series buoy configurations
in the housing and payload coordinate systems.

Configuration Buoy CM Buoy CM
Housing Coord. Sys. Payload Coord. Sys

BuoyGroupSonoA 5x36 J10 13.4 in -0.14 in
BuoyGroupSonoA 5x36 J15 12.8 in -5.7 in
BuoyGroupSonoA 5x36 J20 12.5 in -10.9 in
BuoyGroupSonoA 5x36 J25 12.2 in -16.3 in
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Appendix C

Detailed Joint Controller
Discussion

C.1 The Primitive Motion Model

A simple low level motion controller can be modeled or implemented as an acceleration,
velocity, or position controlled system. To streamline the discussion we consider a linear,
rather than rotary, actuator. The fundamental equations of the system are:

pb = pa + vat+ 1
2at

2, (C.1)

vb = va + aat, (C.2)

where pa and va are the initial position and velocity; and pb and vb are the final position
and velocity which result from an acceleration, a, applied for time, t. In addition the
motion model also includes limits on the magnitude of the permitted acceleration, amax,
and velocity, vmax.

C.2 Acceleration Control

This is the simplest form of control to model and implement. A commanded acceleration
value is specified and applied to the system until a new value is received. If the commanded
acceleration’s magnitude is greater than amax, then amax (with the appropriate sign) is
applied to the system.

In a discrete time system, at each time step the system’s position and velocity are
integrated forward using (C.1) and (C.2) where t is set to the step size. (C.1) should be
calculated before (C.2) so that (C.1) can use the velocity value at the beginning of the step.

To implement the velocity limiting feature of the model the commanded acceleration
needs to be checked to ensure that it does not result in a violation of the maximum permitted
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velocity:

vdesired = vk + acmd dt, (C.3)

ak =

8<: acmd if |vdesired| < vmax,

sign(vdesired)vmax − vk
dt

if |vdesired| > vmax,
(C.4)

pk+1 = pk + vk dt+ 1
2ak dt

2, (C.5)

vk+1 = vk + ak dt, (C.6)

where dt denotes the discrete time step size.
Note that vmax > 0, |vk| ≤ vmax, and when the system is traveling at vmax the acceler-

ation is set to zero. Additionally, these equations do not model the velocity saturating in
the middle of the time step, but rather they model the controller adjusting the acceleration
to bring the system to vmax at the end of the time step. The calculated acceleration value
for any particular time step will always be smaller in magnitude than or equal to the com-
manded acceleration value. As long as the magnitude of the commanded acceleration does
not exceed amax, then this trajectory will not exceed the acceleration limit.

In continuous time systems the time and position at which the velocity will saturate is
calculated by

tvsat =
sign(a)vmax − v

a
, (C.7)

pvsat = p+ vtvsat + 1
2at

2
vsat

= p+
v2max − v2

2a
, (C.8)

where a is the applied acceleration and v is the current velocity. Note that (C.7) and (C.8)
are only valid for non-zero accelerations.

C.3 Velocity Control

In this method of control a desired velocity is specified to the system and the system
accelerates at maximum acceleration to the commanded velocity. When the commanded
velocity can be reached in a single step, then the acceleration is set so that the commanded
velocity is achieved at the end of the step.

As long as the magnitude of the commanded velocity is not permitted to exceed vmax,
then no velocity or acceleration limits will be violated.

adesired =
vcmd − vk

dt
, (C.9)

ak =

8<: sign (vcmd − vk) amax if |adesired| > amax,

vcmd − vk
dt

if |adesired| < amax.
(C.10)

Next (C.1) and (C.2) are used to integrate the system forward.
In some physical systems there are differing limits on maximum acceleration depending

on whether the system is speeding up or slowing down. This can be modeled by

amax =

(
amaxAcc if vcmd − v > 0,

amaxDec if vcmd − v < 0.
(C.11)
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C.4 Position-Velocity Control

Position-Velocity control is the most complicated form of control available to this primitive
controller. The goal for this mode of control is given an initial position and velocity, the
trajectory should result in a specified final position and velocity. Optionally the final time
of the trajectory can be specified. Plain position control might be considered the case where
the final velocity is set to zero. As always the system should not violate its velocity and
acceleration limits. With position-velocity control, there are some significant differences
between the continuous and discrete time implementations, so these will be treated sepa-
rately. Finally, besides the algorithms listed here, there are many others which could be
used, including higher order models with continuously varying accelerations and sinusoidal
trajectories.

C.4.1 Equal Specified Intervals

Because there are two final states to control (position, and velocity), two accelerations will
need to be specified. In general, it is not possible to achieve arbitrary final states from
arbitrary initial states in a single time step because that only affords an opportunity for
one acceleration value to be applied. However, it is possible to specify the required final
states after two acceleration intervals. An example of the resulting trajectory is illustrated
in Figure C.1.
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Figure C.1: The acceleration, velocity and position profiles for equal discrete sampling
intervals.

Given the initial position and velocity one can calculate the required accelerations to
achieve the desired final position and velocity in two steps of duration dt. Additionally,
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the intermediate velocity, v1, after the first step needs to be calculated to ensure that the
velocity limit is not exceeded.

a1 =
pf − p0
dt2

− 3v0 + vf
2dt

, (C.12)

a2 =
3vf + v0

2dt
− pf − p0

dt2
, (C.13)

v1 = v0 + a1dt. (C.14)

If the magnitudes of the accelerations are less than or equal to the maximum allowed ac-
celeration and the magnitude of the intermediate velocity is less than the allowed maximum
velocity, then it is possible for the desired final states to be reached in the two steps.

In a discrete time system dt may be set to any multiple of the system sampling interval.
Additionally, this formulation will work for continuous time systems.

C.4.2 Unequal Specified Intervals

This method is very similar to equal specified intervals, except that the intervals over which
a1 and a2 are applied over are not equal. For this derivation we will specify the total time
of the motion as t, and the transition fraction λ. The switch from a1 to a2 occurs at λt.
An example trajectory is shown in Figure C.2. The duration over which each acceleration
is applied can be written as:

t1 = λt, (C.15)

t2 = (1− λ)t. (C.16)

Given the initial and final positions and velocity, a total time interval, t, and a transition
fraction, λ, the acceleration over each interval can be calculated as

a1 =
2 (pf − p0)

λ2t2
− v0(1 + λ) + vf (1− λ)

tλ2
, (C.17)

a2 =
vf − v0
(1− λ)t

− a1
λ

1− λ
, (C.18)

v1 = v0 + a1λt. (C.19)

It is important that 0 < λ < 1 because λ = 0 or λ = 1 would result in one of the
accelerations being applied for zero time.

Given that λ can be varied over a range of values, this leads to the possibility that λ
could be selected to optimize the acceleration values. Some candidate cost functions might
be

1. Minimize the magnitude of the combined accelerations, J1 = a21 + a22. This is propor-
tional to the applied force or moment squared.

2. Minimize the difference between the accelerations, J2 = (a1 − a2)2.

3. Minimize the applied energy, J3 = (a1λt)
2 + (a2(1− λ)t)2.

4. Minimize the applied power, J4 = a21λt+ a22(1− λ)t.
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Figure C.2: The acceleration, velocity and position profiles for specified but unequal accel-
eration intervals.

For a position and velocity movement with v0 = vf = 0, the representative acceleration
values as a function of λ are plotted in Figure C.3.

The four cost functions plotted as a function of λ in Figure C.4. The cost functions
are normalized with respect to their value at λ = 0.5 to allow an easier comparison with
the equal interval case. It is important to note that all of the proposed cost functions are
minimized at λ = 0.5 when v0 = vf .

Next we look at the same example, except that the final velocity has a non-zero value.
The four cost functions are plotted as functions of λ in Figure C.5. The cost functions are
normalized with respect to their value at λ = 0.5 to allow an easier comparison with the
equal interval case. In this case v0 6= vf . This causes the force squared cost function, J1,
and energy cost function, J3, to be minimized at a value of λ 6= 0.5. However, the cost
function which penalizes a difference between the accelerations, J2, and which minimizes
power, J4 are still minimized by setting λ = 0.5. So the decision to use the equal segment
approach can be justified.

C.4.3 The Fastest Continuous Saturating Response

If the velocity is allowed to saturate at vmax as the system moves from p0, v0 to pf , vf in
continuous time, then the movement will take the shortest amount of time possible. This
trajectory has three sections:

1. Apply a1 from t0 to t1 when the velocity has saturated at vmax heading in the direction
of the final position. The position at which velocity saturation occurs is p1.
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Figure C.3: The acceleration values as a function of lambda for a case where v0 = vf = 0.

2. Travel at vmax from time t1 to t2, and positions p1 to p2.

3. Beginning at time t2 apply an acceleration, a2, to bring the system to its final position
and velocity, pf and vf , at time tf . This trajectory is illustrated in Figure C.6.

The parameters for segment 1 are calculated by

Cdir = sign (pf − p0) , (C.20)

t01 =
Cdirvmax − v0

a1
, (C.21)

p1 = p0 + v0t01 + 1
2a1t

2
01,

= p0 +
v2max − v20

2a1
, (C.22)

where t01 is the time interval from points p0 to p1. The two element subscript indicates
that this is a time interval rather than an absolute time value. Additionally, to ensure
that the initial acceleration, a1, is in the correct direction, set the sign of a1 such that
sign(a1) = sign(pf − p0).

The parameters for segment 3 are calculated by

t2f =
vf − Cdirvmax

a2
, (C.23)

p2 = pf − Cdirvmaxt2f − 1
2a2t

2
2f ,

= pf +
v2max − v2f

2a2
, (C.24)
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Figure C.4: The four cost functions plotted as functions of λ. The cost functions are
normalized with respect to their value at λ = 0.5 to allow an easier comparison with the
equal interval case.

Here again, the sign of the second acceleration segment needs to be correct. It will be
opposite the first segment, i.e. sign(a2) = −sign(pf − p0). And t2f is the time interval from
the point where braking commences until the system is at its final states.

Next the time spent in segment 2 can be found as

t12 =
p2 − p1
Cdirvmax

. (C.25)

If t12 is less than zero, then the assumption that the system will be driven into velocity
saturation is false, and the trajectory should be recalculated without this assumption.

The resulting total time of the movement is simply, t = t01 + t12 + t2f . If maximum
acceleration values are used, i.e. |a1| = |a2| = amax, then this is also the fastest time in
which final conditions can be reached.

The controller needs to be able to specify two parameters to allow it to independently
adjust the two final states, pf and vf . Since the magnitudes of the accelerations and
saturation velocity are fixed, the only parameters the controller can adjust are the time (or
position) that braking commences t2 (or p2) and the duration of the braking, t2f .

To implement this controller, a system could calculate p2 given p0, v0, pf , and vf , apply
the maximum acceleration towards the final position until the velocity saturates and then,
when p2 is reached, apply the maximum acceleration to slow to the final velocity.

Because the final time is not specified, all final positions and velocities are reachable.
Some final states will require a non velocity saturated response which is discussed next.
If sign(vf ) = −sign(pf − p0), then the system will pass through pf headed in the wrong
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and energy cost function, J3, to be minimized at a value of λ 6= 0.5.

direction, before it turns around to approach pf from the correct direction for the sign of
vf .

C.4.4 The Fastest Continuous Non-Saturating Response

As mentioned above if (C.25) gives a value for t12 < 0, then the system never saturates
at vmax during its trajectory from the initial states to the final states. This trajectory is
illustrated in Figure C.7. This trajectory consists of two segments:

1. Apply a1 from t0 until it is time to begin braking at t1. The position at which braking
begins is p1.

2. Beginning at time t1 apply an acceleration, a2, to bring the system to its final position
and velocity, pf and vf , at time tf .
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Figure C.6: The acceleration, velocity and position profiles for a continuous time, velocity
saturating response.

We can derive expressions for the braking point, p1, and the velocity at the breaking
point, v1. Starting with these 4 relationships:

v1 = v0 + a1t01 ⇒t01 =
v1 − v0
a1

, (C.26)

v1 = vf − a2t1f ⇒t1f =
vf − v1
a2

, (C.27)

p1 = p0 + v0t01 + 1
2a1t

2
01 ⇒p1 = p0 + 1

2a1

�
v21 − v20

�
, (C.28)

p1 = pf − v1t1f − 1
2a2t

2
1f ⇒p1 = pf + 1

2a2

�
v21 − v2f

�
, (C.29)

setting (C.28) equal to (C.29) gives

p0 + 1
2a1

�
v21 − v20

�
= pf + 1

2a2

�
v21 − v2f

�
. (C.30)

Now collect the terms to form a quadratic equation in terms of v1.�
1

2a2
− 1

2a1

�| {z }
A

v21 + 0|{z}
B

v1 +

 
v20
2a1
−

v2f
2a2

+ pf − p0

!
| {z }

C

= 0. (C.31)
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velocity saturating response.

Recalling the quadratic equation

x =
−B ±

√
B2 − 4AC

2A
,

for B = 0 the two possible values of v1 are

v1 = ±
Ê
−C
A

= ±

Î
−
�
v20
2a1
−

v2
f

2a2
+ pf − p0

��
1

2a2
− 1

2a1

� . (C.32)

During implementation it may be tempting to just calculate the A and C terms in (C.31)
and solve the quadratic equation. Note that each term has both acceleration values in the
denominator of a fraction. This implementation would give a divide by zero error if either
acceleration is set to zero. However, for a significant range of initial conditions it is possible
to reach the desired final position and velocity with one of the acceleration values set to
zero. To admit these valid solutions simplify (C.32) to

v1 = Cdir

s
2a1a2 (p0 − pf )− a2v20 + a1v2f

a1 − a2
. (C.33)

Now (C.33) will only return a divide by zero error if both acceleration are set to zero.
The Cdir term sets the sign of v1 to match the required direction of travel, i.e. sign(pf −p0).

The procedure for calculating the trajectory is
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1. Use (C.33) to calculate v1 from the initial and final states, and acceleration values.

2. Use either (C.26) and (C.28) or (C.27) and (C.29) to calculate the position, p1, at
which the second acceleration commences.

As in the case where the velocity saturates, the two parameters which are adjusted are
the time that a2 commences and the duration that a2 is applied for.
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Appendix D

Solutions By Constraint Equations

This appendix presents an alternative method of calculating the kinematics and dynamics
of multi-body problems using constraint equations. In this method the forces and moments
are applied to each individual body. The inertia properties are specified for each body.
Then the kinematic relationships between the bodies are enforced by a series of constraint
equations, which describe these kinematic relationships. The complete system of equations
is made up of the dynamics equations for each body and the constraint equations. The
complete system is solved simultaneously at each time step of the simulation.

This approach offers the following advantages:

1. The forces and moments on each body can be calculated individually for that body
and the constraint equation accounts for the coupling between the bodies.

2. Inertia tensors only need to be specified about the body’s CM.

3. The motion of the joint is most easily specified by specifying the moment applied to
the joint.

4. This method readily scales to systems with more than two bodies.

A constraint equation based solution does have a number of disadvantages including:

1. Specifying the joint motion by something besides moments (angle, velocity, accelera-
tion, or jerk) requires additional constraint equations to be added to the system, thus
requiring a larger set of linear equations to be solved.

2. A solution in this form may offer less physical insight into the dynamics of the system.

3. Solving this system maybe more computationally intensive than another formulation.

Two examples of the solving the two body buoy problem using constraint equation are
presented next. The planar two body problem is presented first as an introduction to the
technique. The second case is the full spatial version of the problem.

D.1 Planar Solution Using Constraint Equations

D.1.1 Problem Geometry

Consider a pair of planar rigid bodies, each with 3 degrees of freedom (DOF), two transla-
tional and one rotational. These two bodies are connected by a hinge joint. So the system
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also has two kinematic constraint equations which require that the location of the hinge
point on each body have the same coordinates in the navigation frame. This results in an
system with 4 independent variables (6 eqns - 2 eqns) and requires solving 8 simultaneous
equation (6 eqns + 2 eqns). This analysis draws heavily on the work in [20]. Table D.1 lists
the variables used in this analysis.

1

X1

Y1

x

y

Global Navigation 
Coordinates

r1

r2

rp

2

X2Y2

Rp
2

Rp
1

Body 2

Body 1

Pivot

Figure D.1: The geometry of two rigid planar bodies connected by a pivot. Lower case
vectors are in the navigation coordinate system. Upper case vectors are in the bodies’
coordinate systems.

D.1.2 The Kinematically Constrained Dynamics

The system coordinate vector, q, is a 6 six element vector containing coordinates for each
of the 6 DOFs in the two body planar system. It is built as

q =

26664r1
θ1
r2
θ2

37775 . (D.1)

This two body system’s mass matrix is a 6x6 diagonal matrix, where each body’s mass
or inertia is in the corresponding diagonal element to the translational or rotational DOF
in the state vector q. The inertia for each body is the the inertia about the body’s center
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of mass (CM). The mass matrix is

M =

266666664
m1 0 0 0 0 0
0 m1 0 0 0 0
0 0 J1 0 0 0
0 0 0 m2 0 0
0 0 0 0 m2 0
0 0 0 0 0 J2

377777775 . (D.2)

The time invariant constraint equations are a function of the state vector q and have
the form

Φ(q) = 0. (D.3)

For the planar revolute joint [20, (4.8)] gives the constraint equations as

Φ(q) =

�
xp1 − x

p
2

yp1 − y
p
2

�
=

�
0
0

�
, (D.4)

where xp and yp give the location of the hinge point in global coordinates. (D.4) is simply
requiring that the global coordinates for pivot locations on each body are the same. The
global coordinates for the pivot locations for each body can be found by

rpi = ri + BiR
p
i , (D.5)

where Bi is the planar direction cosine matrix describing the body orientation and given by

Bi =

�
cos θi − sin θi
sin θi cos θi

�
. (D.6)

For the planar revolute joint the Jacobian matrix is given by [20, Table 4.2] as

Φq =

�
1 0 − (yp1 − y1) −1 0 (yp2 − y2)
0 1 (xp1 − x1) 0 −1 − (xp2 − x2)

�
. (D.7)

The vector γ, known as the right side of the kinematic acceleration equations, is in
general [20, eqn (3.16)]

γ = − (Φqq̇)q q̇. (D.8)

For a planar revolute joint γ is [20, Table 4.3]

γ =

"
(xp1 − x1) θ̇1

2 − (xp2 − x2) θ̇2
2

(yp1 − y1) θ̇1
2 − (yp2 − y2) θ̇2

2

#
. (D.9)

At each time step we can solve for the accelerations of the state vector and the Lagrange
multipliers by solving the linear system�

M ΦT
q

Φq 0

� �
q̈
−λ

�
=

�
g

γ − 2αΦ̇− β2Φ

�
. (D.10)

The Lagrange multipliers, λ, are associated with the constraint equations and give the
forces (or moments) required to enforce the constraints. In this example, the two Lagrange
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Table D.1: The variables used in the planar two body system.
Symbol Units Type Description

ri m Vector The location body i’s CM in global coordinates.
rpi m Vector The location body i’s pivot point in global coordi-

nates.
θi rad Scalar The orientation of body i in global coordinates.
Bi none Matrix The direction cosine matrix describing body i’s ori-

entation.
Rp
i m Vector The location of body i’s pivot point in body coordi-

nates.
mi kg Scalar The mass of body i.
Ji kgm2 Scalar The inertia of body i about its CM.
λ mixed Vector The Lagrange multipliers associated with the system

constraints.
M mixed Matrix The system mass matrix.
q mixed Vector The vector of all DOFs for the system.
g mixed Vector The vector of all the forces and moments associated

with each DOF of the system.
γ mixed Vector The vector for the RHS of the kinematic accelera-

tion equations associated with the system constraint
equations.

α, β mixed Scalars Numerical stabilization constants.
Φ(q) mixed Matrix The matrix of the system constraint equations.
Φq mixed Matrix The Jacobian matrix of the system constraint equa-

tions.

Φ(q, t)(d) mixed Matrix The matrix of the optional driving constraint equa-
tions.

Φ
(d)
q mixed Matrix The Jacobian matrix of the optional driving con-

straint equations.

γ(d) mixed Vector The vector for the RHS of the kinematic accelera-
tion equations associated with the driving constraint
equations.
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multipliers give the x and y components of the force acting on the hinge. These values
could be useful for checking that the load capacity of the hinge is not exceeded.

The α and β terms provide negative feedback to stabilize the numerical solution about
valid results. Without these stability terms, the solution becomes unstable when integrated
over time due to accumulated round off errors and other noise sources. This results in the
system constraints being violated. The derivation of this “Constraint Violation Stabilization
Method” is given in [20, Section 13.3.1]. Additionally, [20] also states that for most real
world problems suitable values for α and β are from 1 to 10 and that the stability will be
critically damped if α = β.

The time derivative of the time invariant constraint equations, Φ̇ is

Φ̇ = Φqq̇. (D.11)

D.1.3 Model Forces and Moments

For this analysis I chose to model the 2 body unit as falling through a fluid. Each of the two
bodies experiences forces due to gravity and linear viscous drag. Additionally, an optional
moment, τh, can be applied at the hinge. So the generalized force vector, g, is

g =

266666664
−CD1ẋ1

−9.81m1 − CD1ẏ1
τh

−CD2ẋ2
−9.81m2 − CD2ẏ2

−τh

377777775 , (D.12)

where CD1 and CD2 are linear drag coefficients for each body.

D.1.4 Model Integration

First the state vector q and state velocity vector q̇ are initialized with valid values, i.e.
ones that do not violate the system’s kinematic constraints. For this analysis I assume that
the bodies start at rest, q̇ = 0. The initial position of body 1 and the orientations of both
bodies are specified. The position of body 2 is calculated from

r2 = r1 + B1R
p
1 −B2R

p
2. (D.13)

Next, the second order system is converted to a set of coupled first order ODEs by
creating a new state vector y such that

y =

�
q
q̇

�
. (D.14)

Therefore,

ẏ =

�
q̇
q̈

�
. (D.15)

The initial state and velocity vector can be used to create the initial y value. Φ(q),
Φ̇d(q), Φd(q), g(q, q̇, t), and γ(q, q̇) can be found from this initial state. This allows the
system (D.10) to be solved for the initial values of q̈ and λ using a linear system solver like
MATLAB’s “linsolve” function. Once q̈ is known, ẏ can be specified. At this point there is
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enough information to integrate the system forward by Euler’s Method or Improved Euler’s
Method.

yk+1 = yk + ẏk dt, (D.16)

or

ystart = y,

ytemp = yk + ẏk dt,

ẏtemp = recalculate g and solve (D.10) based on ytemp,

yk+1 = ystart + 0.5 (ẏk + ẏtemp) dt. (D.17)

D.1.5 Applying a Moment to the Hinge

If no moment is applied at the hinge, τh in the force vector g, then the pivot is modeled
as a frictionless joint. If a moment is applied to the hinge, equal and opposite moments
are applied to each body in (D.12). This moment can be applied as a function of time,
simulating a driving actuator. Alternatively, this moment could be applied as a function
of the state vector q. For example, a model of a rotational spring with some linear viscous
friction could be written as

τh = k (θ1 − θ2) + b
�
θ̇1 − θ̇2

�
. (D.18)

Where k is the rotational spring constant for the joint and b is the linear viscous damping
coefficient for the joint.

D.1.6 Applying a Driving Constraint to the Hinge

Driving constraints are discussed in Sections 3.2.2, 4.2.8, and 4.3 of [20]. Driving constraints
are additional constraints placed on the system to enforce a particular trajectory for some
or all of the DOFs. Driving constraints have the form

Φ(d)(q, t) = 0, (D.19)

where the superscript (d) indicates terms associated with the driving constraints. These
additional time dependent constraints can be included in (D.10) in a modified form as264 M ΦT

q Φ
(d)T
q

Φq 0 0

Φ
(d)
q 0 0

375264 q̈
−λ
−λ(d)

375 =

264 g

γ − 2αΦ̇− β2Φ
γ(d) − 2αΦ̇(d) − β2Φ(d)

375 , (D.20)

where γ(d) is created by grouping driving constraint terms from [20, eqn (3.16)] resulting in

γ(d) = −
�
Φ(d)
q q̇

�
q
q̇− 2Φ

(d)
qt q̇−Φ

(d)
tt . (D.21)

The Lagrange multipliers associated with the driving constraints, λ(d), give the forces (or
moments) required to enforce the driving constraints and produce the required trajectory.
These values can be used to calculate the power required for the actuator and to ensure
that its load capacity is not exceeded.
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D.1.7 Driving the Hinge’s Position Directly

Applying a moment to the hinge is one method of modeling the actuator. It is a good
method if the system is torque limited. However, there are many cases where the actuators
are not toque limited or were the desired command to the actuator system is a position or
velocity command. In these cases we can use driving constraints to command the two body
system.

If the actuator has a much faster time constant than the system and is sufficiently
strong, it can be assumed that it can drive the hinge to any angle. This can be modeled as
a driving constraint of the form

Φ(d) = θ1 − θ2 − d(t) = 0. (D.22)

The Jacobian matrix of this constraint is

Φ(d)
q =

h
∂Φ(d)

∂x1
∂Φ(d)

∂y1
∂Φ(d)

∂θ1
∂Φ(d)

∂x2
∂Φ(d)

∂y2
∂Φ(d)

∂θ2

i
=
�
0 0 1 0 0 −1

�
. (D.23)

The other required parameters are

Φ̇(d) = Φ(d)q̇ = θ̇1 − θ̇2, (D.24)�
Φ(d)q̇

�
q

= 0, (D.25)

Φ
(d)
qt = 0, (D.26)

Φ
(d)
tt = −d̈(t). (D.27)

So the lower block on the RHS of (D.20) is

d̈(t)− 2α
�
θ̇1 − θ̇2

�
− β2 (θ1 − θ2 − d(t)) . (D.28)

Moments can still be applied to the hinge in the presence of the driving constraint. For
example the spring and friction moments described by (D.18) can still be included in the
model. While these moments will not change the position of the hinge over time, their
effects will be included in the calculation of the required driving moment, λ(d).
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Figure D.2: Body and hinge angles vs. time for a planar example. Both bodies start out
inclined at an angle of 15 degrees. The hinge is driven by sine function of amplitude 10
degrees and period 60 seconds. Body 2 has more drag and less mass and inertia. The body
angles indicated that the composite body is oscillating back and forth as it falls.
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D.2 Spatial Solution Using Constraint Equations

Using constraint equations, the spatial solution is very similar to the planar solution. The
major differences are: the rotational acceleration equation is more complicated and allows
for coupling between the axes, the system inertia is described as a tensor, and the constraint
equations are more complicated.

A big difference between the spatial buoy model presented here and the model presented
elsewhere in this research is that that joint here is modeled as an elevation over azimuth
joint.

D.2.1 Problem Geometry

Consider a pair of rigid bodies each with 6 degrees of freedom (DOF), three translational
and three rotational. These two bodies are connected by a joint that only permits rotation
about two axes. Modeling this joint requires four constraint equations: three to eliminate
translational motion between the bodies, and one to eliminate an axis of rotation between
the bodies.

This results in an system with 8 independent variables (12 eqns - 4 eqns) and requires
solving 16 simultaneous equation (12 eqns + 4 eqns). This analysis draws heavily on the
work in [20].

Body 1 is the buoy housing (the lower cylinder). Body 2 is the payload (the upper
cylinder). Each body has a pivot point associated with it. The pivot point is described
by the vector Rp1 in the housing coordinate system. The pivot point is described by the
vector Rp2 in the payload coordinate system. The orientation of these vectors in the global
coordinate system are sp1 and sp2 respectively.

Two sets of constraints are used to model the joint. A spherical constraint is used to
enforce the condition that the pivot points on each body are collocated with each other,
and no translation is permitted between the bodies. This constraint provides three of the
required four constraint equations. The fourth constraint equation determines the type of
joint.

If the joint is an elevation over azimuth type joint, the fourth constraint equation is
that, in the navigation frame, the payload’s y axis is perpendicular to the housing’s z axis.
If the joint is a universal (a.k.a. Hooke) joint, the fourth constraint is that the payload’s y
axis is perpendicular to the housing’s x axis.

The direction of the joint axes are specified by the unit vectors S1 and S2 in their respec-
tive body’s coordinate systems. The unit vectors s1 and s2 describe the axes orientation
in the navigation coordinate system. An example of these vectors are illustrated on an
elevation over azimuth joint in Figure D.3.

D.2.2 The Joint Constraint Equations

The joint imposes four kinematic constraint equations on the system. In all the constraint
equations, vectors are in the global coordinate system. These are

Φ(s,3) ≡ r1 + B1Rp1 −B2Rp2 − r2 = 0, (D.29)

Φ(n1,1) ≡ sT1 s2 = 0. (D.30)

The constraint described in (D.29) requires that the pivot points on each body be
collocated in the global coordinate system. See [20, eqn (7.7)]. The superscript (s,3) is
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2
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1

Figure D.3: Elevation over azimuth joint geometry for solving by constraint equations. The
housing and payload are connected by a spherical joint with an additional constraint. The
azimuth axis, s1, is collinear with the long axis of the housing. The elevation axis, s2,
is perpendicular to the azimuth axis and parallel to the Y axis of the payload coordinate
system.
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the notation used in [20] and indicates that this is a spherical constraint with 3 constraint
equations.

The constraint described in (D.30) requires that the joint axis, s1, remains perpendicular
to the other joint axis, s2. See [20, eqn (7.3)]. The super script (n1,1) indicates that this is
a type 1 normal constraint with 1 constraint equation. The housing axis that s1 is aligned
with determines the joint type. If s1 is parallel to the housing’s X axis then the joint is a
universal joint. If s1 is parallel to the housing’s Z axis then the joint is an elevation over
azimuth joint. These values for s1 can obtained directly from the 1st and 3rd columns of
the housing’s DCM, B1.

D.2.3 The Kinematically Constrained Dynamics

The translational equations of motion (EOM) for the spatial case are the same as for the
planar case, except the third dimension is added giving

Nir̈i = fi, (D.31)

where Ni is the diagonal mass matrix of body i, Ni = diag[m,m,m].

Chapter 11 of [20] gives three possible formulations for the rotational spatial equations
of motion. Formulation I gives the rotational EOMs in terms of the acceleration of the
Euler parameters. But since the four Euler parameters are not independent, this leads to
Formulation II, which adds a constraint equation to the Formulation I system to enforce
the correct relationship between the Euler parameters. Formulation III, however, leaves the
EOMs in terms of the rotational velocities (and accelerations) in the body’s local coordinate
frame. This formulation is most compatible with the rest of the buoy model and it results
in fewer equations to solve, so it is used here. It is

JiΩ̇i + Ω̂iJiΩi = Ti, (D.32)

where Ji is the inertia tensor of body i, Ωi is the rotational velocity vector, and Ti is the
applied torque vector. All terms are in body i’s coordinate system.

The system of equations for multiple constrained bodies is given by [20, eqn (11.49)],
and adding the constraint stabilization terms from [20, eqn (13.18)] gives1"

M Φ(m)T

Φ(m) 0

# �
ḣ
−λ

�
+

�
b
0

�
=

�
g

γ# − 2αΦ̇− β2Φ

�
, (D.33)

where M is the system mass matrix consisting of the inertia tensors and masses of each
body,

M =

2666664
N1

J1

. . .
Nb

Jb

3777775 . (D.34)

1In [20, eqn (11.49)] the variable B is used for the Jacobian matrix of the constraints. Later in table
11.1 he uses Φ(m) for the individual blocks of that matrix. So I am using Φ(m) to represent the complete
formulation III modified Jacobian matrix of the constraint equations.
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ḣ is the state vector of the bodies translational and rotational accelerations of the form

ḣ =

26666664
r̈1
Ω̇1
...
r̈b
Ω̇b

37777775 . (D.35)

Note: The forces and translational accelerations are in the global navigation coordinate
system and the moments and angular accelerations are in the individual body coordinate
systems!

The term b in (D.33) is

b =

26666664
0

Ω̂1J1Ω1
...
0

Ω̂bJbΩb

37777775 . (D.36)

As in the planar case λ are the Lagrange multipliers associated with each of the con-
straints. g are the forces and moments associated with each body in their coordinate
systems.

The matrix Φ(m) is a modified form of the the Jacobian Matrix of the constraint equa-
tions which has the general form of

Φ(m) =
�
Φr1

1
2Φp1L

T
1 · · · Φrb

1
2ΦpbL

T
b

�
. (D.37)

The vector γ# is a modified form of the RHS of the kinematic acceleration equations
and has the general form

γ# =
�
Φr1

1
2Φp1L

T
1 · · · Φrb

1
2ΦpbL

T
b

�
26666664

r̈1
Ω̇1
...
r̈b
Ω̇b

37777775 = Φ(m)ḣ. (D.38)

Table 11.1 in [20] gives formulations of the elements of Φ(m) and γ# for a number of
common spatial constraints. The terms for the constraints in the buoy joint are listed
in Table D.2. The rotation rates for the modified Jacobian matrix are specified in the
navigation coordinate system, not the body coordinate system, and they found for each
body by ωi = BiΩi.

Table D.2: Components of the modified Jacobian matrix, Φ(m), and modified RHS of the
kinematic acceleration matrix γ# for the type of constraints in the buoy’s joint. The rotation
rates, ωi, are specified in the navigation coordinate system. From [20, Table 11.1]

Φ Φ
(m)
ri

1
2Φ

(m)
pi LTi Φ

(m)
rj

1
2Φ

(m)
pj LTj γ#

Φ(s,3) I −ŝPi Bi −I ŝPj Bj −ω̂iṡPi + ω̂j ṡ
P
j

Φ(n1,1) 0T −sTj ŝiBi 0T −sTi ŝjBj −2ṡTi ṡj + ṡTi ω̂isj + ṡTj ω̂jsi
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D.2.4 Calculating Buoy Specific Φ(m) and γ#

Table D.2 presents the components of the modified Jacobian matrix and RHS of the kine-
matic acceleration matrix exactly as they appear in [20]. All the vectors in Table D.2 are
in global coordinates. Calculating all the required terms gives:

sk = BkSk, (D.39)

ṡk = BkΩ̂kSk, (D.40)

Ḃk = BkΩ̂k, (D.41)

spk = BkRpk, (D.42)

where k = i or j.
So substituting (D.42) in the expressions for Φ(m) and γ# to put the locations of the

joint pivot points in consistent notation gives:

Φ(m) =

�
I −ŝP1 B1 −I ŝP2 B2

0T −sT2 ŝ1B1 0T −sT1 ŝ2B2

�
, (D.43)

γ# =

�
−ω̂1ṡ

P
1 + ω̂2ṡ

P
2

−2ṡT1 ṡ2 + ṡT1 ω̂1s2 + ṡT2 ω̂2s1

�
. (D.44)

Again, the rotation rates, ωi, are specified in the navigation coordinate system.

D.2.5 Joint Angles and Angular Rates

In modeling the joint it is desirable to be able to calculate the relative angle between the two
bodies, or the joint angles. In the physical realization of this system the joint’s azimuth and
elevation angles would be read by motor encoders and are the primary feedback signals for
calculating the control of the payload. Given that the attitude of each body is described by
the direction cosine matrices B1 and B2 which describe the orientation of the housing and
payload bodies respectively in the global navigation coordinate system, the DCM describing
the rotation from housing to payload can be calculated as:

B = BT
1 B2. (D.45)

Once the DCM B is known, the joint angles are calculated by the usual conversion between
DCM and Euler angles.

It is also desired to know the rotation rates of the joint, which can be calculated as

Ḃ = ḂT
1 B2 + BT

1 Ḃ2

=
�
B1Ω̂1

�T
B2 + BT

1 B2Ω̂2

= Ω̂T
1 BT

1 B2 + BT
1 B2Ω̂2,

= Ω̂T
1 B + BΩ̂2. (D.46)

It is important to realize that Ḃ is not a valid DCM. For example if both bodies are
stationary, then Ω1 = Ω2 = 0 and therefore Ḃ = 0. Once Ḃ is known, the joint angular
rate can be calculated by

Ḃ = BΩ̂

Ω̂ = BT Ḃ, (D.47)

where the individual angular rate are the appropriate terms of Ω̂.
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D.2.6 Integrating the Model Forward

(D.33) is solved at each time step to find the translational and rotational accelerations
associated with each body. These accelerations are used to integrate the system states
forward to the next time step. The acceleration equations describe a system of second
order ODEs. The second order system is converted to a system of first order ODEs to
facilitate numerical integration. In this section r refers to the location of the center of
mass, rcm, of the body unless otherwise noted.

Recall the acceleration vector specified by (D.35),

ḣ =

26664 r̈1
Ω̇1

r̈1
Ω̇2

37775 .
So the vector of derivatives for the first order system is

ẏ =

26666666666664

ṙ1
Ω1

ṙ2
Ω2

r̈1
Ω̇1

r̈2
Ω̇2

37777777777775
, (D.48)

where r̈1, Ω̇1, r̈2, and Ω̇2, were from the solution to (D.33); and ṙ1, Ω1, ṙ2, and Ω2 were
the velocity values used in the calculation of (D.33). These derivative vectors allow the
integration of each body’s position and attitude by:

rk+1 = rk + ṙk∆t, (D.49)

Bi k+1 = Bi k + Bi kΩ̃k∆t, (D.50)

ṙk+1 = rk + ṙk∆t, (D.51)

Ωk+1 = Ωk + Ω̇k∆t. (D.52)

i is the body’s subscript identifier.

D.2.7 Using Improved Euler

Section D.2.6 is an implementation of Euler’s method for integration. It is useful in the
initial development of the model. However, the numerical instabilities that can occur when
using it are not desirable. To improve the numerical stability, the model is integrated
forward using the Improved Euler’s method as follows:

1. Calculate the forces and moments applied to the bodies based on their state informa-
tion based at the start of the time step.

2. Calculate Φ
(m)
q , Φ, Φ̇, and γ# from the state information at the start of the time

step.
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3. Make a working copy of the state information for each body.

4. Integrate the working copy forward using Euler’s method, by solving (D.33) and ap-
plying (D.49) through (D.52).

5. Using the working copy state information, calculate Φ
(m)
q , Φ, Φ̇, and γ#.

6. Solve (D.33) using the working copy states and the updated Φ
(m)
q , Φ, Φ̇, and γ#

values.

7. Average the velocity and acceleration values found in steps 4 and 6.

8. Integrate the original body state information forward using the average derivative
values and (D.49) through (D.52).

In should be clear that the applied forces and moments are assumed to be piecewise con-
stant over the time step. Calculating them is significantly more computationally intensive
than other parts of model, so the piecewise constant assumption only requires computing
them once per time step.
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Appendix E

Use of a Tuned Mass Damper

It should be possible to dampen the buoy’s resonant peak response by using a tuned mass
damper (TMD). The TMD can be tuned to adjust the passive characteristics of the buoy’s
vertical oscillation. The use of tuned mass dampers to reduce vibration is a well established
practice. The patent for a sprung mass to reduce the motion of structure was first awarded
in 1909 to Frahm [10]. In 1928, Ormondryoy and Den Hartog [2] show that adding a
damper increases the frequency interval over which the sprung mass is effective (in addition
to dissipating energy from the structure). The basic principles of the vibration damper are
presented in texts on vibrations such as [18, p. 240] and [3, p.145-149]. There are countless
examples in the literature of tuned mass dampers being used to improve the response of
many types of structures. Frequency analysis of tuned mass dampers is presented by Krenk
in [15].

Implementing a tuned mass damper in the two body buoy simulation would make the
system into a three body simulation. The direct solution simulation framework presented
in Chapter 2 is not equipped to handle this. Rather this would be best implemented by
using the method of constraint equations to solve for the multi-body system’s dynamics.
The method of constraint equations is introduced and summarized in Appendix D.

However, as a starting point to understand how a tuned mass damper might improve
the buoy’s vertical response, we can perform some initial analysis by modeling the buoy as
a single-body cylinder. With this simplifying assumption we can proceed.

It has been shown in Section 2.9 that the damped frequency of oscillation for a cylinder
floating in the water will be similar to its natural frequency which is given by

ωd ≈ ωn = R

É
πρg

m
. (E.1)

This result was derived using a simple second order model for the system of

z̈ +
d

m
ż +

k

m
z = 0, (E.2)

where k = πρgR2 and the usual second order system relationships of ωn =
È
k/m, 2ξωn =

d/m, and ω2
n = ω2

d + (ξωn)2 apply. ξ is the damping ratio of the system.
Adding a TMD to the cylinder to attempt to dampen its response would result in a

two mass system. Such a two mass system is similar to the one presented by Friedland
in [11, Example 3H, p. 86].

This system is illustrated in Figure E.1. In this construct, m1 is the mass of the cylinder
without the TMD. m2 is the mass of the TMD. k1 is the “spring constant” associated with
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the restoring action due to the buoyant force on the cylinder and k1 = πρgR2. d1 is the
viscous drag between the cylinder and water. It is typically very small. k2 and d2 are spring
and damping effects between the TMD, m2, and the rest of the cylinder. It is expected that
k2 and d2 could be tuned by the designer to provide the desired response.

The model also allows for the possibility of two active control forces being applied to the
system. f1 is a force applied to the cylinder in the vertical direction. This could be from
a vertical thruster for example. f2 is a force applied between the TMD and the cylinder.
A positive value of f2 pushes the TMD and cylinder further apart. For all of the following
analysis f2 will be set to zero. The external force f1 will be used to drive the impulse
response and the generate Bode plots for the system.

m2

m1

d2

d1

k2

k1

z2

z1

TMD

f1

f2

Figure E.1: The tuned mass damper model for controlling the resonant peak of vertical
oscillation for a cylindrical buoy. For all the analysis presented here, the force f2 is assumed
to be zero.

The variables z1 and z2 specify the distances from the equilibrium heights for m1 and
m2 respectively. Both z1 and z2 are referenced to ground. An alternate variable δTMD is
defined as the difference in m2 from it equilibrium point with respect to the cylinder. δTMD

is calculated as

δTMD = z2 − z1. (E.3)

We can write the equations of motion (EOM) for each mass using Newton’s second law

m1z̈1 = −d1ż1 − k1z1 + d2(ż2 − ż1) + k2(z2 − z1) + f1 − f2, (E.4)

m2z̈2 = −d2(ż2 − ż1)− k2(z2 − z1) + f2. (E.5)

To write the system in the standard form of ẋ = Ax+Bu we can define the state vector
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x, the control vector u, and the system matrices A and B as

x =
�
z1 z2 ż1 ż2

�T
, (E.6)

u =
�
f1 f2

�T
, (E.7)

A =

26664 0 0 1 0
0 0 0 1

−(k1 + k2)/m1 k2/m1 −(d1 + d2)/m1 d2/m1

k1/m2 −k2/m2 d2/m2 −d2/m2

37775 , (E.8)

B =

26664 0 0
0 0

1/m1 −1/m1

0 1/m2

37775 . (E.9)

Next we can compare the performance of a cylinder with a tuned mass damper to one
without. The single mass system can be described by the state and input matrices

x =
�
z ż

�T
, (E.10)

u =
�
f1
�
, (E.11)

A =

�
0 1

−k1/m −d1/m

�
, (E.12)

B =

�
0

1/m

�
, (E.13)

where k1 and d1 are the same as in the two mass system presented above in (E.6) through
(E.9) and m is the total system mass. The parameters for both systems are presented in
Table E.1. The parameters match the prototype buoy configuration. The tuned mass, m2,
is the mass of the prototype buoy’s battery. The damping term, d1, is selected to give a
reasonable settling time for the buoy.

Table E.1: Model parameters for a cylindrical buoy with and without a tuned mass damper.
The parameters match the prototype buoy configuration. The tuned mass, m2, is the mass
of the prototype buoy’s battery. The damping term, d1, is selected to give a reasonable
settling time for the buoy.

Parameter Variable Cylinder w/o TMD Cylinder w/ TMD

mass (kg) m 2.546 2.546
radius (m) R 0.0397 0.0397
restoring term (kg/s2) k1 48.52 48.52
damping term (kg/s) d1 0.25 0.25
TMD mass (kg) m2 N/A 1.0
TMD spring (kg/s2) k2 N/A Various
TMD damper (kg/s) d2 N/A Various

Using MATLAB’s inpulse and bode commands we can compare the two systems’ im-
pulse responses and Bode plots to see the effects of using a tuned mass damper with various
k2 and d2 values. Again, in the cylinder with the TMD, the force f2 is set to zero and the
force f1 is used to drive the impulse response and Bode plots. In the pair of plots that
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follow, the TMD spring constant, k2, is specified as a multiple of the cylinder’s buoyant
restoring constant, k1. Likewise, the TMD damping constant, d2, is specified as a multiple
of the cylinder’s damping constant, d1.

In Figure E.2 the TMD has a mass of 0.39 times of the system mass, a spring constant
equal to the buoyant restoring constant, and damping constant of 30 times that of the
cylinder’s viscous drag in the water.

With this configuration, the TMD has improved the system performance by 1) reducing
the magnitude of the resonant peak by over 14 dB, and 2) decreasing the settling time from
just under 80 seconds, to 17.3 seconds. The resonant frequency is almost unchanged. It
shifted from 4.37 rad/s (a 1.43 second period) to 4.09 rad/s (a 1.53 second period). The
TMD has caused the resonant peak to get wider. This illustrates one way in which a tuned
mass damper can be used to shape a structure’s response, by reducing the magnitude of
the resonant peak.

In Figure E.3 the TMD has a spring constant equal to three times buoyant restoring
constant, and damping constant equal to the cylinder’s viscous drag in the water.

With this configuration, the TMD has improved the system performance by 1) reducing
the magnitude of the frequency response by approximately 10 dB up to a frequency of
6.55 rad/s (a 0.96 second period), 2) shifting the resonant peak to a significantly higher
frequency of 8.2 rad/s (a 0.77 second period), and 3) very slightly reducing the magnitude
of the resonant peak (by 2 dB). However, the TMD has caused the system’s settling time
to increase to 117 seconds. This illustrates another way in which a tuned mass damper can
be used to shape a structure’s response, by shifting the location of the resonant peak to a
frequency that the structure is less likely to encounter.

Finally, when designing a tuned mass damper, it is important to check the magnitude of
the relative motion between the damper’s mass and the underlying structure to ensure that
the damper does not exceed its available travel and render the analysis invalid. This relative
translation is calculated by finding δTMD in (E.3). Plots of the δTMD vs. time for the two
TMD implementations discussed above are shown in Figure E.4. The implementation with
the stiffer spring and weaker drag (blue) requires approximately ±4 cm of travel (or 3.2
inches of total travel). While the implementation with the weaker spring and more drag only
requires ±3 cm of travel (or 2.4 inches of total travel). As a first pass it seems reasonable to
allow for this much travel of the prototype buoy configuration’s battery within the housing.
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Bode Plot for Cylinders with and w/o a TMD
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Figure E.2: The impulse response and Bode plots showing how a tuned mass damper
could be used to improve a cylindrical buoy’s settling time and reduce the magnitude of its
resonant peak without significantly changing the frequency of the resonant peak.
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Bode Plot for Cylinders with and w/o a TMD
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Figure E.3: The impulse response and Bode plots showing how a tuned mass damper could
be used to improve a cylindrical buoy’s response by shifting the resonant peak to a region
that is less of a concern for the system and by reducing the magnitude of the overall response
across a broad range of frequencies.
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Figure E.4: The relative motion between the TMD mass and the cylinder for the two TMD
implementations described in the text. The implementation with the stiffer spring and
weaker drag (blue) requires approximately ±4 cm of travel (or 3.2 inches of total travel).
The implementation with weaker spring and more drag (green) requires approximately ±3
cm of travel (2.4 inches total travel) to be effective.
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Appendix F

Large Test Cylinder Data

This appendix contains the plots of the roll and pitch data for the individual inclined release
trials using the large instrumented cylinder.
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Figure F.1: Roll and Pitch Values from the Large Test Cylinder Experiment, Trial B. Trial
B was an inclined release trial where the cylinder was released from 81 degrees away from
the vertical (38 degrees in roll and -79 degrees in pitch). Release is at 2.5 seconds.
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Figure F.2: Roll and Pitch Values from the Large Test Cylinder Experiment, Trial F. Trial
F was an inclined release trial where the cylinder was released from 84 degrees away from
the vertical (-60 degrees in roll and -78 degrees in pitch). Release is at 2.5 seconds.
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Figure F.3: Roll and Pitch Values from the Large Test Cylinder Experiment, Trial J. Trial
J was an inclined release trial where the cylinder was released from 81 degrees away from
the vertical (28 degrees in roll and -80 degrees in pitch). Release is at 6 seconds.
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Figure F.4: Roll and Pitch Values from the Large Test Cylinder Experiment, Trial N. Trial
N was an inclined release trial where the cylinder was released from 90 degrees away from
the vertical (-90 degrees in roll and 7 degrees in pitch). Release is at 2 seconds.
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