An Easy to Manufacture Non-Contact Precision Linear Motion System And Its Applications

by

Roger Shapley Cortesi

S.B., Mechanical Engineering Massachusetts Institute of Technology, 1999

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL FULFILLMENT OF THE DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

August 2000

© 2000 Massachusetts Institute of Technology All rights reserved

Signature of Author	
	Department of Mechanical Engineering
	August 1, 2000
Certified by	
	Professor Alexander Slocum
	Thesis Supervisor
Accepted by	
	Professor Ain A. Sonin
	Chairman, Department Graduate Committee

An Easy to Manufacture Non-Contact Precision Linear Motion System And Its Applications

by

ROGER CORTESI

Submitted to the Department of Mechanical Engineering on August 1st, 2000 in Partial Fulfillment of the Requirements for the Degree of Master of Science at the Massachusetts Institute of Technology

ABSTRACT

The Axtrusion is a new linear motion element developed by Professor Alexander Slocum and Roger Cortesi of the Massachusetts Institute of Technology's Mechanical Engineering Department. It is an easy to manufacture non-contact linear motion system. The prototype uses porous graphite air bearings and an open face permanent magnet linear motor to support and propel the carriage. Since there is no contact between the carriage and the way, the Axtrusion is ideal for high speed where reliability is at a premium. Initial testing of the prototype carriage indicates that it has the following performance specifications: a vertical load capacity of 2000 N (450 lbs); horizontal load capacity of 4000 N (900 lbs); a carriage pitch error of 12 micro-radians (2.5 arc seconds); a yaw error of 7.7 micro-radians (1.6 arc seconds); a vertical straightness at the center of the carriage of 0.3 microns (0.000012 inches); and a vertical stiffness of the carriage of 422 Newtons per micron (2,400,000 lbs/in).

Thesis Supervisor: Prof. Alexander H. Slocum Dept. of Mechanical Engineering

ACKNOWLEDGMENTS

I would like to thank my thesis advisor Professor Alex Slocum for all of his help and critisim. I would also like to thank Eli Razon of Anorad Corporation (www.anorad.com), Drew Devitt of Newway Bearings (www.newwaybearings.com), Phillip Greene of Dover Instruments (www.doverinstruments.com), and Claire "the measurement goddess" Johnson also of Dover Instrument for all of their help in making this project a success. A big thanks to the summer UROPS Sean Montgoery and Kelly Harper for all their help in machining the parts An finally to Jen Kelly for her proof reading help.

6

Abstract				
Acknowledgments	5			
Nomenclature	13			
Chapter 1. Designing the Axtrusion	14			
1.1 Axtrusion Components	15			
1.2 How the Axtrusion Works	17			
1.3 The Bench Level Prototype	19			
1.4 Bearing Selection 1.4.1 Rolling Elements 1.4.1 Rolling Elements 1.4.2 Hydrostatic Bearings	21 21 21			
1.4.3 Orifice Air Bearings1.4.4 Porous Graphite Air Bearings1.1.1.1	21 21			
1.5 Way Surface Selection 1.5.1 Granite 1.5.1 Granite 1.5.2 Polymer Concrete 1.5.3 Metal 1.5.4 Aluminum Oxide	23 23 23 23 23			
1.6 Motive Power Selection	25 25 25 25			
1.7 Sizing the Carriage (Load Capacity)	27			
1.8 Sizing the Carriage (Roll and Normal Stiffness) 1.8.1 Stiffness of the Individual Bearing Pads 1.8.2 Stiffness Normal to the Direction of Travel 1.8.3 Rotational Stiffness	29 29 29 29			
1.9 Casting the Carriage Base	31			
1.10 Machining the Carriage Base	33			
1.11 The Carriage Fixturing	35			
1.12 Replicating the Bearing Pads to the Carriage Base	37			
1.13 Assembly Lessons Learned	39			
1.14 Modal Analysis Setup	41			
1.15 Modal Analysis Results	43			

1 16	The F	Nunamic Stiffness	5
1.10	M		.) .7
1.17	Measu	urement Setup	•/
1.18	The P	Pitch Data	.9
1.19	The Y	Zaw Data	1
1.20	The L	inear Position Accuracy Data	3
1.21	The V	Vertical Straightness Data 5	5
1.22	The V	Vertical Stiffness Data 5	7
Chapte	er 2.	The MiniMill	60
2.1	Some	Competing Machines	51
	2.1.1	Small Hobbyist Machines	51
	2.1.2	Small CNC Machining Centers	1
2.2	Some	Initial Concepts	3
2.3	Two '	"L"s To Make a Machine 6	5
2.4	The E	Error Budget	7
	2.4.1	Static Deflection Errors	7
	2.4.2	Thermal Expansion Errors 6	7
	2.4.3	Control and Alignments Errors	7
2.5	MiniN	Mill Major Components 6	9
2.6	Simpl	le Stiffness Check	'1
2.7	A Fin	ite Element Check	3
2.8	An FI	EA Check of the Z Axis	5
2.9	Displa	acement Errors Due to Gravity	7
	2.9.1	Error Inducing Displacements	7
	2.9.2	Non Error Inducing Displacement	7
2.10	Rema	ining Work on the Minimill	9
Chapte	er 3.	Axtrusion Part Drawings	60
Chapte	er 4.	Axtrusion Supplementary Materials	.3
A.1	Carria	age Stiffness Estimates	3
	A.1.1	Air Bearing Stiffness Calculations	3
	A.1.2	Estimating the Stiffness of the Axtrusion	5
	A.1.3	Translation and Rotation of Points Not at the C.O.S	7
A.2	Detail	Bearing Replication Steps	7

A.3 Performance Data from the Prototype	23
A.3.1 Carriage Pitch Data	23
A.3.2 Carriage Yaw Data	27
A.3.3 Linear Position Accuracy Data	31
A.3.4 Straightness Data	33
A.4 The Stiffness Data	35

TABLE 1.1	Carriage Floating Modes
TABLE 1.2	Carriage Not Floating Modes
TABLE 1.3	Modal Equipment Conversion Factors
TABLE 2.1	Equivalent Young's Modulus for Air Pad Models
TABLE A.1	Carriage Pitch Data Results
TABLE A.2	Carriage Yaw Data Results
TABLE A.3	Linear Position Accuracy Results
TABLE A.4	Vertical Carriage Displacements Under Load
TABLE A.5	Vertical Carriage Stiffness Data

NOMENCLATURE

Α	area [m ²]
\vec{C}	carriage compliance matrix (6 x 6)
$\overline{D_{agurigan}}$	the displacement and rotational vector (1×6) of the carriage
$E^{carriage}$	Young's modulus [Pa]
È	The displacement vector (1 x 4) of the point \vec{P}
$\frac{1}{f}$	frequency [Hz]
F	force [N]
F	attractive force between the motor coil and magnet track [N]
F	force on each side bearing [N]
F .	force on each inhoard ton bearing [N]
top1	force on each inboard top bearing [N]
r _{top2}	[11]
8 h	air gan between air bearing and way surface [m] or [microns]
$\frac{n}{\mathbf{UTM}}$	The Homogenious Transformation Matrix (4 x 4)
ПIМ V	atiffnaag [N/m]
	stiffness of the 50 x 100 mm bearings [N/m]
κ_{50x100}	summess of the 30 x 100 mm bearings [N/m]
K_{75x150}	stiffness of the 75 x 150 mm bearings [N/m]
L	
L_{50x100}	load on 50 x 100 mm bearing [N]
L_{75x150}	load on 75 x 150 mm bearings[N]
$L_{bmaxside}$	the maximum load that can be supported by a side bearing [N]
L _{bmaxtop}	the maximum load that can be supported by a top bearing [N]
L _{cmaxh}	the maximum working load of the carriage in the horizontal direction [N]
L_{cmaxv}	the maximum working load of the carriage in the vertical direction [N]
L_{lr}	the distance between the left and right pairs of top bearings [mm]
Р	The vector (1×4) containing the cordinates of a point with respect to the
	carriage's center of stiffness.
P_s	supply pressure [Pa]
\boldsymbol{q}	motor angle [degrees]
w _m	width of the motor track [mm]
Y_{I}	location of the inboard pair of top bearings in the Y direction [mm]
Y_2	location of the outboard pair of top bearings in the Y direction [mm]
Y_m	motor coil location in the Y axis [mm]
Z	the center of the side bearings in the Z direction [mm]
Z_m	motor coil location in the Z axis [mm]